Nous donnons une caractérisation complète de tous les morphismes binaires qui préservent les mots sturmiens et montrons que les mots infinis engendrés par ces morphismes sont rigides.
We give a complete characterization of binary morphisms which preserve Sturmian words and show that infinite words generated by these morphisms are rigid.
@article{JTNB_1993__5_2_221_0, author = {Mignosi, Filippo and S\'e\'ebold, Patrice}, title = {Morphismes sturmiens et r\`egles de Rauzy}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {221--233}, publisher = {Universit\'e Bordeaux I}, volume = {5}, number = {2}, year = {1993}, zbl = {0797.11029}, mrnumber = {1265903}, language = {fr}, url = {archive.numdam.org/item/JTNB_1993__5_2_221_0/} }
Mignosi, Filippo; Séébold, Patrice. Morphismes sturmiens et règles de Rauzy. Journal de Théorie des Nombres de Bordeaux, Tome 5 (1993) no. 2, pp. 221-233. http://archive.numdam.org/item/JTNB_1993__5_2_221_0/
[1] A characterization of the quadratic irrationals, Canad. Math. Bull. 34 (1991), 36-41. | MR 1108926 | Zbl 0688.10007
,[2] Substitution invariant cutting sequences, Journal de Théorie des Nombres de Bordeaux 5 (1993), 123-137. | Numdam | MR 1251232 | Zbl 0786.11041
, , , ,[3] Sequences with minimal block growth, Math. Systems Theory 7 (1973), 138-153. | MR 322838 | Zbl 0256.54028
, ,[4] Sur les facteurs des suites de Sturm, Theoret. Comput. Sci. 71 (1990), 381-400. | MR 1057771 | Zbl 0694.68048
, ,[5] Determination of [nθ] by its sequence of differences, Canad. Math. Bull. 21 (1978), 441-446. | Zbl 0401.10018
, , ,[6] Sturmian minimal sets, Amer. J. Math 66 (1944), 605-620. | MR 10792 | Zbl 0063.01982
,[7] Symbolic dynamics II - Sturmian trajectories, Amer. J. Math. 62 (1940), 1-42. | JFM 66.0188.03 | MR 745 | Zbl 0022.34003
, ,[8] On continued fractions, substitutions and characteristic sequences, Japan. J. Math. 16 (1990), 287-306. | MR 1091163 | Zbl 0721.11009
, ,[9] Problems 149-151, "Problems and Solutions", EATCS Bulletin 32 (1987), 331-333.
,[10] Combinatorics on words, Addison Wesley, 1982. | MR 675953 | Zbl 0514.20045
,[11] On the number of factors of Sturmian words, Theoret. Comput. Sci. 82 (1991), 71-84. | MR 1112109 | Zbl 0728.68093
,[12] Mots infinis en arithmétique, in Automata on infinite words, Nivat, Perrin (Eds), Lecture Notes in Computer Science, Springer-Verlag 192 (1984), 165-171. | MR 814741 | Zbl 0613.10044
,[13] Fibonacci morphisms and Sturmian words, Theoret. Comput. Sci. 88 (1991), 365-384. | MR 1131075 | Zbl 0737.68068
,[14] The geometry of Markoff numbers, Math. Intelligencer 7 (1985), 20-29. | MR 795536 | Zbl 0566.10024
,[15] Beatty sequences, continued fractions, and certain shift operators, Canad. Math. Bull. 19 (1976), 473-482. | MR 444558 | Zbl 0359.10028
,[16] Elementary Number Theory, Wolters-Noordhoff, Groningen, 1970. | MR 265267 | Zbl 0204.37101
,