Primitive divisors of Lucas and Lehmer sequences, II
Journal de théorie des nombres de Bordeaux, Volume 8 (1996) no. 2, p. 251-274

Let α and β are conjugate complex algebraic integers which generate Lucas or Lehmer sequences. We present an algorithm to search for elements of such sequences which have no primitive divisors. We use this algorithm to prove that for all α and β with h(β/α)4, the n-th element of these sequences has a primitive divisor for n>30. In the course of proving this result, we give an improvement of a result of Stewart concerning more general sequences.

Soit α et β deux entiers algébriques complexes conjugués. On propose un algorithme dont l’objet est de découvrir des éléments des suites de Lucas ou de Lehmer associées à α et β, n’ayant pas de diviseurs primitifs. On utilise cet algorithme pour démontrer que pour tout α et β tel que h(β/α)4, le n-ième terme des suites de Lucas et de Lehmer admet un diviseur primitif dès que n>30. Nous donnons en outre une amélioration d’un résultat de Stewart se rapportant à des suites plus générales.

@article{JTNB_1996__8_2_251_0,
     author = {Voutier, Paul M.},
     title = {Primitive divisors of Lucas and Lehmer sequences, II},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     publisher = {Universit\'e Bordeaux I},
     volume = {8},
     number = {2},
     year = {1996},
     pages = {251-274},
     zbl = {0873.11013},
     mrnumber = {1438469},
     language = {en},
     url = {http://www.numdam.org/item/JTNB_1996__8_2_251_0}
}
Voutier, Paul M. Primitive divisors of Lucas and Lehmer sequences, II. Journal de théorie des nombres de Bordeaux, Volume 8 (1996) no. 2, pp. 251-274. http://www.numdam.org/item/JTNB_1996__8_2_251_0/

[1] P.T. Bateman, C. Pomerance and R.C. Vaughan,, On the size of the coefficients of the cyclotomic polynomial, Topics in Classical Number Theory,, (Budapest, 1981), Colloquia Mathematica Societatis Janos Bolyai, 34, North-Holland, New York, 1984. | MR 781138 | Zbl 0547.10010

[2] G.D. Birkhoff and H.S. Vandiver, On the integral divisors of an - bn, Ann. of Math. (2) 5 (1904), 173-180. | JFM 35.0205.01 | MR 1503541

[3] L. Carlitz, On the coefficients of the cyclotomic polynomials, Amer. Math. Monthly 75 (1968), 372-377. | MR 227086 | Zbl 0157.08901

[4] R.D. Carmichael, On the numerical factors of the arithmetic forms an ±βn, Ann. of Math. (2) 15 (1913), 30-70. | JFM 44.0216.01

[5] L. K. Durst Exceptional real Lehmer sequences, Pacific J. Math. 9 (1959), 437-441. | MR 108465 | Zbl 0091.04204

[6] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, 5th edition, 1978. | MR 67125 | Zbl 0423.10001

[7] G. Karpilovsky, Field Theory: Classical Foundations and Multiplicative Groups, Marcel Dekker, New York, 1988. | MR 972982 | Zbl 0677.12010

[8] M. Laurent, M. Mignotte and Y. Nesterenko, Formes Linéaires en deux logarithmes et déterminants d'interpolation, J. Number Theory, to appear. | Zbl 0843.11036

[9] D.H. Lehmer, The distribution of totatives, Canadian J. Math. 7 (1955), 347-357. | MR 69199 | Zbl 0064.27902

[10] P. Philippon and M. Waldschmidt, Lower bounds for linear forms in logarithms, New Advances in Transcendence Theory (A. Baker, ed.), Cambridge University Press, Cambridge, 1988. | MR 972007

[11] G. Robin, Estimation de la fonction de Tchebychef θ sur le k-ième nombre premier et grandes valeurs de la fonction w(n) nombre de diviseurs premiers de n, Acta Arith. XLII (1983), 367-389. | Zbl 0475.10034

[12] J.B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94. | MR 137689 | Zbl 0122.05001

[13] A. Schinzel, Primitive divisors of the expression An - Bn in algebraic number fields, J. Reine Angew. Math. 268/269 (1974), 27-33. | MR 344221 | Zbl 0287.12014

[14] C.L. Stewart, Primitive divisors of Lucas and Lehmer sequences, Transcendence Theory: Advances and Applications (A. Baker and D.W. Masser, eds.), Academic Press, New York, 1977. | MR 476628

[15] C.L. Stewart, On divisors of Fermat, Fibonacci, Lucas and Lehmer numbers, Proc. London Math. Soc. (3) 35 (1977), 425-447. | MR 491445 | Zbl 0389.10014

[16] P.M. Voutier, Primitive divisors of Lucas and Lehmer sequences, Math. Comp. 64 (1995), 869-888. | MR 1284673 | Zbl 0832.11009

[17] P.M. Voutier, An effective lower bound for the height of algebraic numbers, Acta Arith., (to appear). | MR 1367580 | Zbl 0838.11065

[18] M. Waldschmidt, Linear Independence of Logarithms of Algebraic Numbers, IMSc Report No 116 (1992), The Institute of Mathematical Sciences, Madras. | Zbl 0809.11038

[19] M. Ward, The intrinsic divisors of Lehmer numbers, Ann. of Math. (2) 62 (1955), 230-236. | MR 71446 | Zbl 0065.27102

[20] K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. 3 (1892), 265-284. | JFM 24.0176.02 | MR 1546236