On the Piatetski-Shapiro-Vinogradov theorem
Journal de théorie des nombres de Bordeaux, Volume 9 (1997) no. 1, p. 11-23

In this paper we consider the asymptotic formula for the number of the solutions of the equation p 1 +p 2 +p 3 =N where N is an odd integer and the unknowns p i are prime numbers of the form p i =[n 1/γ i ]. We use the two-dimensional van der Corput’s method to prove it under less restrictive conditions than before. In the most interesting case γ 1 =γ 2 =γ 3 =γ our theorem implies that every sufficiently large odd integer N may be written as the sum of three Piatetski-Shapiro primes of type γ for 50/53 < γ < 1.

Dans cet article, nous considérons la formule asymptotique pour le nombre de représentations d’un entier impair N sous la forme p 1 +p 2 +p 3 =N, où les p i sont des nombres premiers du type p i =[n 1/γ i ] ; nous utilisons la méthode de van der Corput en dimension deux et nous étendons le domaine de validité de la formule asymptotique en affaiblissant les hypothèses sur les γ i . Dans le cas le plus intéressant γ 1 =γ 2 =γ 3 =γ, notre résultat entraîne que tout entier impair assez grand s’écrit comme la somme de trois nombres premiers de Piatetski-Shapiro du type γ pour 50/53<γ<1.

Keywords: Piatetski-Shapiro primes, Goldbach problem, exponential sums
@article{JTNB_1997__9_1_11_0,
     author = {Kumchev, Angel},
     title = {On the Piatetski-Shapiro-Vinogradov theorem},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     publisher = {Universit\'e Bordeaux I},
     volume = {9},
     number = {1},
     year = {1997},
     pages = {11-23},
     zbl = {0890.11029},
     mrnumber = {1469658},
     language = {en},
     url = {http://www.numdam.org/item/JTNB_1997__9_1_11_0}
}
Kumchev, Angel. On the Piatetski-Shapiro-Vinogradov theorem. Journal de théorie des nombres de Bordeaux, Volume 9 (1997) no. 1, pp. 11-23. http://www.numdam.org/item/JTNB_1997__9_1_11_0/

[1] R.C. Baker, G. Harman, J. Rivat, Primes of the form [nc], J. Number Theory 50 (1995), 261-277. | MR 1316821 | Zbl 0822.11062

[2] A. Balog, J.P. Friedlander, A hybrid of theorems of Vinogradov and Piatetski-Shapiro, Pasific J. Math. 156 (1992), 45-62. | MR 1182255 | Zbl 0726.11061

[3] S.W. Graham, G.A. Kolesnik, Van der Corput's Method of Exponential Sums, L.M.S. Lecture Notes 126, Cambridge University Press, 1991. | Zbl 0713.11001

[4] D.R. Heath-Brown, The Piatetski-Shapiro prime number theorem, J. Number Theory 16 (1983), 242-266. | MR 698168 | Zbl 0513.10042

[5] C.-H. Jia, On the Piatetski-Shapiro prime number theorem (II), Science in China Ser. A 36 (1993), 913-926. | MR 1248537 | Zbl 0790.11063

[6] ____, On the Piatetski-Shapiro prime number theorem, Chinese Ann. Math. 15B:1 (1994), 9-22. | Zbl 0795.11038

[7] ____, On the Piatetski-Shapiro-Vinogradov theorem, Acta Arith. 73 (1995), 1-28. | MR 1358184 | Zbl 0834.11038

[8] G.A. Kolesnik, The distribution of primes in sequences of the form [nc], Mat. Zametki 2 (1972), 117-128. | MR 215799 | Zbl 0199.08904

[9] ____, Primes of the form [nc], Pacific J. Math. 118 (1985), 437-447. | MR 789183 | Zbl 0571.10037

[10] A. Kumchev, On the distribution of prime numbers of the form [nc], (preprint). | MR 1689675

[11] D. Leitmann, Abschatzung trigonometrischer summen,, J. Reine Angew. Math. 317 (1980), 209-219. | MR 581343 | Zbl 0421.10024

[12] H.-Q. Liu, J. Rivat, On the Piatetski-Shapiro prime number theorem, Bull. London Math. Soc. 24 (1992), 143-147. | Zbl 0772.11032

[13] I.I. Piatetski-Shapiro, On the distribution of prime numbers in sequences of the form [f(n)], Mat. Sb. 33 (1953), 559-566. | MR 59302 | Zbl 0053.02702

[14] J. Rivat, Autour d'un theoreme de Piatetski-Shapiro, Thesis, Université de Paris Sud, 1992.

[15] I.M. Vinogradov, Representation of an odd number as the sum of three primes, Dokl. Akad. Nauk. SSSR 15 (1937), 291-294. | JFM 63.0131.04 | Zbl 0016.29101

[16] E. Wirsing, Thin subbases, Analysis 6 (1986), 285-306. | MR 832752 | Zbl 0586.10032