On étudie une famille de formes modulaires qui sont des produits de fonctions
In this article we consider one special class of modular forms which are products of Dedekind
@article{JTNB_1999__11_1_247_0, author = {Voskresenskaya, Galina V.}, title = {One special class of modular forms and group representations}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {247--262}, publisher = {Universit\'e Bordeaux I}, volume = {11}, number = {1}, year = {1999}, mrnumber = {1730443}, zbl = {0954.11014}, language = {en}, url = {https://www.numdam.org/item/JTNB_1999__11_1_247_0/} }
TY - JOUR AU - Voskresenskaya, Galina V. TI - One special class of modular forms and group representations JO - Journal de théorie des nombres de Bordeaux PY - 1999 SP - 247 EP - 262 VL - 11 IS - 1 PB - Université Bordeaux I UR - https://www.numdam.org/item/JTNB_1999__11_1_247_0/ LA - en ID - JTNB_1999__11_1_247_0 ER -
Voskresenskaya, Galina V. One special class of modular forms and group representations. Journal de théorie des nombres de Bordeaux, Tome 11 (1999) no. 1, pp. 247-262. https://www.numdam.org/item/JTNB_1999__11_1_247_0/
[1] M24 and certain automorphic forms. Contemp. Math. 45 (1985), 223-244. | MR | Zbl
,[2] Finite groups and Hecke operators. Math.Ann. 283 (1989), 381-409. | MR | Zbl
,[3] Multiplicative products of η-functions. Contemp. Math. 45 (1985), 89-98. | Zbl
, , ,[4] Theory of automorphic forms of weight 1. Adv. Stud. Pure Math. 13 (1988), 503-584. | MR | Zbl
,[5] Higher reciprocity law, modular forms of weight 1 and elliptic curves. Nagoya Math.J. 98 (1985), 109-115. | MR | Zbl
,[6] On McKay's conjecture. Nagoya Math.J. 95 (1984), 85-89. | MR | Zbl
,[7] Courbes modulaires de gendre 1. Bull. Soc. Math. France 43 (1975), 80 pp. | Numdam | MR | Zbl
,[8] Affine systems of roots and the Dedekind η-function. Sb. Perev. Mat. 16 (1972), 3-49. | Zbl
,[9] Generators and relations for discrete groups. Second edition, Band 14 Springer-Verlag, Berlin-Göttingen- New York 1965 ix+161 pp. | MR | Zbl
, ,[10] An introduction to the arithmetic theory of automorphic functions. Kanô Memorial Lectures, No. 1. Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1971. xiv+267 pp. | MR | Zbl
,[11] Examples of multiplicative η- products. Sci. Pap. Coll. Arts and Sci. Univ. Tokyo. 35 (1986), 133-149. | Zbl
,[12] Modular forms and group representations. Matem. Zametki 52 (1992), 25-31. | MR | Zbl
,[13] Cusp forms and finite subgroups in SL(5, C). Fun. anal. and appl. 29 (1995), 71-73. | MR | Zbl
,[14] Modular forms and regular representations of groups of order 24. Matem. Zametki 60 (1996), 292-294. | MR | Zbl
,[15] Modular forms and the representations of dihedral groups. Matem. Zametki 63 (1998), 130-133. | MR | Zbl
,[16] Hypercomplex numbers, root systems and modular forms, "Arithmetic and geometry of varieties" . Samara, (1992), 48-59. | MR | Zbl
,