Soit une extension galoisienne de groupe de Galois . On étudie l’ensemble des combinaisons linéaires sur de caractères de l’anneau de Burnside , qui induisent des combinaisons -linéaires des formes trace de sous-extensions de qui sont triviales dans l’anneau de Witt W de . On montre que le sous-groupe de torsion de est le noyau de l’homomorphisme signature.
Let be a Galois extension with Galois group . We study the set of -linear combinations of characters in the Burnside ring which give rise to -linear combinations of trace forms of subextensions of which are trivial in the Witt ring W of . In particular, we prove that the torsion subgroup of coincides with the kernel of the total signature homomorphism.
@article{JTNB_1999__11_1_31_0, author = {Epkenhans, Martin}, title = {An analogue of {Pfister's} local-global principle in the burnside ring}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {31--44}, publisher = {Universit\'e Bordeaux I}, volume = {11}, number = {1}, year = {1999}, mrnumber = {1730431}, zbl = {0964.11021}, language = {en}, url = {http://archive.numdam.org/item/JTNB_1999__11_1_31_0/} }
TY - JOUR AU - Epkenhans, Martin TI - An analogue of Pfister's local-global principle in the burnside ring JO - Journal de théorie des nombres de Bordeaux PY - 1999 SP - 31 EP - 44 VL - 11 IS - 1 PB - Université Bordeaux I UR - http://archive.numdam.org/item/JTNB_1999__11_1_31_0/ LA - en ID - JTNB_1999__11_1_31_0 ER -
Epkenhans, Martin. An analogue of Pfister's local-global principle in the burnside ring. Journal de théorie des nombres de Bordeaux, Tome 11 (1999) no. 1, pp. 31-44. http://archive.numdam.org/item/JTNB_1999__11_1_31_0/
[1] The Galois number. Math. Ann. 309 (1997), 81-96. | MR | Zbl
and[2] A Survey of Trace Forms of Algebraic Number Fields. World Scientific, Singapore, (1984). | MR | Zbl
and[3] On the computation of the trace form of some Galois extensions. J. Algebra, 192 (1997), 209-234. | MR | Zbl
, , and[4] On Trace Forms of étale Algebras and Field Extensions. Math. Z. 217 (1994), 421-434. | MR | Zbl
and[5] Quadratic and Hermitian Forms. Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, (1985). | MR | Zbl
[6] On the equivalence of quadratic forms. Proc. Acad. Amsterdam, 62 (1959), 241-253. | MR | Zbl
[7] The Discriminant Matrices of an Algebraic Number Field. J. London Math. Soc. 43 (1968), 152-154. | MR | Zbl