Lubin-Tate formal groups and module structure over Hopf orders
Journal de Théorie des Nombres de Bordeaux, Tome 11 (1999) no. 2, pp. 269-305.

Ces dernières années les ordres de Hopf ont joué dans des situations diverses un rôle important dans l'étude de la structure des module galoisiens en géométrie arithmétique. Nous introduisons ici un cadre qui rend compte des situations précédentes, et nous étudions les propriétés des algèbres de Hopf dans ce contexte général. Nous insistons en particulier sur le rôle des résolvantes dans les calculs explicites. Nous illustrons cette étude en appliquant nos résultats à la détermination de la structure de module de Hopf de l'anneau des entiers d'une extension de Lubin-Tate relative.

Over the last years Hopf orders have played an important role in the study of integral module structures arising in arithmetic geometry in various situations. We axiomatize these situations and discuss the properties of the (integral) Hopf algebra structures which are of interest in this general setting. In particular, we emphasize the role of resolvents for explicit computations. As an illustration we apply our results to determine the Hopf module structure of the ring of integers in relative Lubin-Tate extensions.

@article{JTNB_1999__11_2_269_0,
     author = {Bley, Werner and Boltje, Robert},
     title = {Lubin-Tate formal groups and module structure over Hopf orders},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {269--305},
     publisher = {Universit\'e Bordeaux I},
     volume = {11},
     number = {2},
     year = {1999},
     zbl = {0979.11053},
     mrnumber = {1745880},
     language = {en},
     url = {http://archive.numdam.org/item/JTNB_1999__11_2_269_0/}
}
Bley, Werner; Boltje, Robert. Lubin-Tate formal groups and module structure over Hopf orders. Journal de Théorie des Nombres de Bordeaux, Tome 11 (1999) no. 2, pp. 269-305. http://archive.numdam.org/item/JTNB_1999__11_2_269_0/

[A] A. Agboola, Torsion points on elliptic curves and galois module structure. Invent. Math. 123 (1996), 105-122. | MR 1376248 | Zbl 0864.11055

[B] W. Bley, Elliptic curves and module structure over Hopf orders and The conjecture of Chinburg-Stark for abelian extensions of a quadratic imaginary field. Habilitation Thesis Universität Augsburg, Report des Instituts für Mathematik der Universität Augsburg No. 396, 1998.

[BT] N. Byott, M.J. Taylor, Hopf orders and Galois module structure. In: Group rings and class groups, R. W. Roggenkamp, M. J. Taylor (eds.) Birkhäuser, Basel Boston, 1992. | MR 1167451 | Zbl 0811.11068

[By] N. Byott, Associated orders of certain extensions arising fom Lubin-Tate formal groups. J. Théor. Nombres Bordeaux 9 (1997),449-462. | Numdam | MR 1617408 | Zbl 0902.11052

[CT] Ph. Cassou-Noguès, M.J. Taylor, Elliptic functions and rings of integers. Prog. in Math. 66, Basel-Stuttgart-Boston, 1987. | MR 886887 | Zbl 0608.12013

[Ch] Sh.-P. Chan, Relative Lubin-Tate formal groups and Galois module structure. Manuscripta Math. 39 (1992), 109-113. | MR 1156220 | Zbl 0755.11037

[CL] Sh.-P. Chan, C.-H. Lim, The associated orders of rings of integers in Lubin-Tate division fields over the p-adic number field. Illinois J. Math. 39 (1995), 30-38. | MR 1299647 | Zbl 0816.11061

[CS] S.U. Chase, M.E. Sweedler, Hopf algebras and Galois theory. Springer Lecture Notes in Mathematics 97, Springer-Verlag, 1969. | MR 260724 | Zbl 0197.01403

[CH] L.N. Childs, S. Hurley, Tameness and local normal bases for objects of finite Hopf algebras. Trans. Amer. Math. Soc. 298 (1986), 763-778. | MR 860392 | Zbl 0609.16005

[dS] E. Deshalit, Iwasawa Theory of Elliptic Curves with Complex Multiplication. Perspectives in Math. Vol. 3, Academic Press, 1987. | MR 917944 | Zbl 0674.12004

[R] I. Reiner, Maximal orders., Academic Press, 1975. | MR 1972204 | Zbl 0305.16001

[S] R. Schertz, Galoismodulstruktur und Elliptische Funktionen. J. Number Theory 39 (1991), 285-326. | MR 1133558 | Zbl 0739.11052

[ST] A. Srivastav, M.J. Taylor, Elliptic curves with complez multiplication and Galois module structure. Invent. Math. 99 (1990), 165-184. | MR 1029394 | Zbl 0705.14031

[T1] M.J. Taylor, Hopf Structure and the Kummer Theory of Formal Groups. J. Reine Angew. Math. 375/376 (1987), 1-11. | MR 882287 | Zbl 0609.12015

[T2] M.J. Taylor, Mordell-Weil Groups and the Galois Module Structure of Rings of Integers. Illinois J. Math. 32 (1988), 428-452. | MR 947037 | Zbl 0631.14033