Groupe des unités pour des extensions diédrales complexes de degré 10 sur Q
Journal de théorie des nombres de Bordeaux, Tome 13 (2001) no. 2, pp. 469-482.

Le but de cet article est de montrer qu’un ensemble quelconque de quatre racines des polynômes quintiques p(x) exhibés par H. Darmon forme sous certaines conditions un système fondamental d’unités de la fermeture normale du corps 𝐐(θ)p(θ)=0.

The purpose of this paper is to show that any set of four roots of the quintic polynomials exhibited by H. Darmon forms under certain conditions a fundamental system of units for the corresponding dihedral fields.

@article{JTNB_2001__13_2_469_0,
     author = {Kihel, Omar},
     title = {Groupe des unit\'es pour des extensions di\'edrales complexes de degr\'e $10$ sur $Q$},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {469--482},
     publisher = {Universit\'e Bordeaux I},
     volume = {13},
     number = {2},
     year = {2001},
     mrnumber = {1879669},
     zbl = {1012.11096},
     language = {fr},
     url = {http://archive.numdam.org/item/JTNB_2001__13_2_469_0/}
}
TY  - JOUR
AU  - Kihel, Omar
TI  - Groupe des unités pour des extensions diédrales complexes de degré $10$ sur $Q$
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2001
SP  - 469
EP  - 482
VL  - 13
IS  - 2
PB  - Université Bordeaux I
UR  - http://archive.numdam.org/item/JTNB_2001__13_2_469_0/
LA  - fr
ID  - JTNB_2001__13_2_469_0
ER  - 
%0 Journal Article
%A Kihel, Omar
%T Groupe des unités pour des extensions diédrales complexes de degré $10$ sur $Q$
%J Journal de théorie des nombres de Bordeaux
%D 2001
%P 469-482
%V 13
%N 2
%I Université Bordeaux I
%U http://archive.numdam.org/item/JTNB_2001__13_2_469_0/
%G fr
%F JTNB_2001__13_2_469_0
Kihel, Omar. Groupe des unités pour des extensions diédrales complexes de degré $10$ sur $Q$. Journal de théorie des nombres de Bordeaux, Tome 13 (2001) no. 2, pp. 469-482. http://archive.numdam.org/item/JTNB_2001__13_2_469_0/

[1] W.E.H. Berwick, Algebraic number fields with two independent units. Proc. London Math. Soc 34 (1932), 360-378. | JFM | Zbl

[2] K.K. Billevi, Sur les unités d'un corps algébrique de degré 3 ou 4. Mat. Sbornik N. S. 40 (1956) (en russe).

[3] A. Brumer, On the group of units of an absolutely cyclic number field of prime degree. J. Math. Soc. Japan 21 (1969), 357-358. | MR | Zbl

[4] T.W. Cusick, Lower bounds for regulators. Lecture Notes in Math. 1068, 63-73, Springer, Berlin, 1984. | MR | Zbl

[5] H. Darmon, Une famille de polynômes liée à X0(5). Notes non publiées, 1993.

[6] H. Darmon, Note on a polynomial of Emma Lehmer. Math. Comp. 56 (1991), 795-800. | MR | Zbl

[7] M. Edwards, Galois Theory. Graduate Texts in Mathematics 101, Springer-Verlag, New York, 1984. | MR | Zbl

[8] M.-N. Gras, Special units in real cyclic sextic fields. Math. Comp. 48 (1987), 179-182. | MR | Zbl

[9] M. Ishida, Fundamental units of certain algebraic number fields. Abh. Math. Semi.Univ. Hamburg 39 (1973), 245-250. | MR | Zbl

[10] K. Iwasawa, A note on the group of units of an algebraic number field. J. Math. Pures Appl. 35 (1956), 189-192. | MR | Zbl

[11] O. Lecacheux, Unités d'une famille de corps liés à la courbe X1(25). Ann. Inst. Fourier 40 (1990), 237-254. | EuDML | Numdam | MR | Zbl

[12] E. Lehmer, Connections between Gaussian periods and cyclic units. Math. Comp. 50 (1988), 535-541. | MR | Zbl

[13] S. Maki, The determination of units in real cyclic sextic fields. Lecture Notes in Math. 797, Springer, Berlin, 1980. | MR | Zbl

[14] D. Shanks, The simplest cubic fields. Math. Comp. 28 (1974), 1137-1152. | MR | Zbl

[15] R. Schoof, L.C. Washington, Quintic polynomials and real cyclotomic fields with large class number. Math. Comp. 50 (1988), 541-555. | MR | Zbl

[16] H.-J. Stender, Lôsbare Gleichungen axn - byn = c und Grundeinheiten fûr einige algebraische Zahikôrper vom Grade n = 3,4,6. J. Reine Angew. Math. 290 (1977), 24-62. | EuDML | MR | Zbl

[17] L.C. Washington, Introduction to Cyclotomic Fields. Graduate Texts in Mathematics 83, Springer-Verlag, New York, 1982. | MR | Zbl

[18] E. Weiss, First Course in algebra and number theory. Academic Press, New York-London, 1971. | MR | Zbl

[19] C.L. Zhao, The fundamental units in absolutely cyclic number fields of degree five. Sci. Sinica Ser. A 27 (1984), 27-40. | MR | Zbl