On sums of Hecke series in short intervals
Journal de théorie des nombres de Bordeaux, Volume 13 (2001) no. 2, p. 453-468

We have ${\sum }_{K-G\le {k}_{j}\le K+G}{\alpha }_{j}{H}_{j}^{3}\left(\frac{1}{2}\right){\ll }_{ϵ}G{K}^{1+ϵ}$ for ${K}^{ϵ}\le G\le K,\phantom{\rule{4pt}{0ex}}\text{where}\phantom{\rule{4pt}{0ex}}{\alpha }_{j}={\left|{\rho }_{j}\left(1\right)\right|}^{2}{\left(cosh\pi {k}_{j}\right)}^{-1},\phantom{\rule{4pt}{0ex}}\text{and}\phantom{\rule{4pt}{0ex}}{\rho }_{j}\left(1\right)$ is the first Fourier coefficient of the Maass wave form corresponding to the eigenvalue ${\lambda }_{j}={k}_{j}^{2}+\frac{1}{4}$ to which the Hecke series ${H}_{j}\left(s\right)$ is attached. This result yields the new bound ${H}_{j}\left(\frac{1}{2}\right){\ll }_{ϵ}{k}_{j}^{\frac{1}{3}+ϵ}.$

On a ${\sum }_{K-G\le {k}_{j}\le K+G}{\alpha }_{j}{H}_{j}^{3}\left(\frac{1}{2}\right){\ll }_{ϵ}G{K}^{1+ϵ}$ pour ${K}^{ϵ}\le G\le K,\text{ou}\phantom{\rule{4pt}{0ex}}{\alpha }_{j}={\left|{\rho }_{j}\left(1\right)\right|}^{2}{\left(cosh\pi {k}_{j}\right)}^{-1},\phantom{\rule{4pt}{0ex}}\text{et}\phantom{\rule{4pt}{0ex}}{\rho }_{j}\left(1\right)$ est le premier coefficient de Fourier de forme de Maass correspondant à la valeur propre ${\lambda }_{j}={k}_{j}^{2}+\frac{1}{4}$ à laquelle le série de Hecke ${H}_{j}\left(s\right)$ est attachée. Ce résultat fournit l’estimation nouvelle ${H}_{j}\left(\frac{1}{2}\right){\ll }_{ϵ}{k}_{j}^{\frac{1}{3}+ϵ}.$

@article{JTNB_2001__13_2_453_0,
author = {Ivi\'c, Aleksandar},
title = {On sums of Hecke series in short intervals},
journal = {Journal de th\'eorie des nombres de Bordeaux},
publisher = {Universit\'e Bordeaux I},
volume = {13},
number = {2},
year = {2001},
pages = {453-468},
zbl = {0994.11020},
mrnumber = {1879668},
language = {en},
url = {http://www.numdam.org/item/JTNB_2001__13_2_453_0}
}

Ivić, Aleksandar. On sums of Hecke series in short intervals. Journal de théorie des nombres de Bordeaux, Volume 13 (2001) no. 2, pp. 453-468. http://www.numdam.org/item/JTNB_2001__13_2_453_0/

 J.B. Conrey, H. Iwaniec, The cubic moment of central values of automorphic L-functions. Ann. of Math. (2) 151 (2000), 1175-1216. | MR 1779567 | Zbl 0973.11056

 S.W. Graham, G. Kolesnik, Van der Corput's Method of Exponential Sums. LMS Lecture Note Series 126, Cambridge University Press, Cambridge, 1991. | MR 1145488 | Zbl 0713.11001

 M.N. Huxley, Area, Lattice Points, and Exponential Sums. London Math. Soc. Monographs 13, Oxford University Press, Oxford, 1996. | MR 1420620 | Zbl 0861.11002

 A. Ivic, The Riemann zeta-function. John Wiley and Sons, New York, 1985. | MR 792089 | Zbl 0556.10026

 A. Ivic, Y. Motohashi, On some estimates involving the binary additive divisor problem. Quart. J. Math. (Oxford) 46 (1995), 471-483. | MR 1366618 | Zbl 0847.11046

 H. Iwaniec, Small eigenvalues of Laplacian for Γ0 (N). Acta Arith. 56 (1990), 65-82. | Zbl 0702.11034

 H. Iwaniec, The spectral growth of automorphic L-functions. J. Reine Angew. Math. 428 (1992), 139-159. | MR 1166510 | Zbl 0746.11024

 S. Katok, P. Sarnak, Heegner points, cycles and Maass forms. Israel J. Math. 84 (1993), 193-227. | MR 1244668 | Zbl 0787.11016

 N.N. Lebedev, Special functions and their applications. Dover Publications, Inc., New York, 1972. | MR 350075 | Zbl 0271.33001

 W. Luo, Spectral mean-values of automorphic L-functions at special points. Analytic Number Theory: Proc. of a Conference in Honor of H. Halberstam, Vol. 2 (eds. B. C. Berndt et al.), Birkhauser, Boston etc., 1996, 621-632. | MR 1409382 | Zbl 0866.11034

 Y. Motohashi, Spectral mean values of Maass wave forms. J. Number Theory 42 (1992), 258-284. | MR 1189505 | Zbl 0759.11026

 Y. Motohashi, The binary additive divisor problem. Ann. Sci. l'École Norm. Sup. 4e série 27 (1994), 529-572. | Numdam | MR 1296556 | Zbl 0819.11038

 Y. Motohashi, Spectral theory of the Riemann zeta-function. Cambridge University Press, Cambridge, 1997. | MR 1489236 | Zbl 0878.11001