Maximal unramified extensions of imaginary quadratic number fields of small conductors, II
Journal de théorie des nombres de Bordeaux, Tome 13 (2001) no. 2, pp. 633-649.

Dans l’article [15], nous donnions dans une table la structure des groupes de Galois Gal(K ur /K) des extensions maximales non ramifiées K ur des corps de nombres quadratiques imaginaires K de conducteur 1000 sous l’Hypothèse de Riemann Généralisée, sauf pour 23 d’entre eux (tous de conducteur 723). Ici nous mettons à jour cette table, en précisant, pour 19 de ces corps exceptionnels, la structure de Gal(K ur /K). En particulier pour K=𝐐(-856), nous obtenons Gal(K ur /K)S 4 ˜×C 5 etK ur =K 4 , le quatrième corps de classes de Hilbert de K. C’est le premier exemple d’un corps de nombres dont la tour de corps de classes est de longueur 4.

In the previous paper [15], we determined the structure of the Galois groups Gal(K ur /K) of the maximal unramified extensions K ur of imaginary quadratic number fields K of conductors 1000 under the Generalized Riemann Hypothesis (GRH) except for 23 fields (these are of conductors 723) and give a table of Gal(K ur /K). We update the table (under GRH). For 19 exceptional fields K of them, we determine Gal(K ur /K). In particular, for K=𝐐(-856), we obtain Gal(K ur /K)S 4 ˜×C 5 andK ur =K 4 , the fourth Hilbert class field of K. This is the first example of a number field whose class field tower has length four.

@article{JTNB_2001__13_2_633_0,
     author = {Yamamura, Ken},
     title = {Maximal unramified extensions of imaginary quadratic number fields of small conductors, {II}},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {633--649},
     publisher = {Universit\'e Bordeaux I},
     volume = {13},
     number = {2},
     year = {2001},
     mrnumber = {1879676},
     zbl = {1013.11076},
     language = {en},
     url = {http://archive.numdam.org/item/JTNB_2001__13_2_633_0/}
}
TY  - JOUR
AU  - Yamamura, Ken
TI  - Maximal unramified extensions of imaginary quadratic number fields of small conductors, II
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2001
SP  - 633
EP  - 649
VL  - 13
IS  - 2
PB  - Université Bordeaux I
UR  - http://archive.numdam.org/item/JTNB_2001__13_2_633_0/
LA  - en
ID  - JTNB_2001__13_2_633_0
ER  - 
%0 Journal Article
%A Yamamura, Ken
%T Maximal unramified extensions of imaginary quadratic number fields of small conductors, II
%J Journal de théorie des nombres de Bordeaux
%D 2001
%P 633-649
%V 13
%N 2
%I Université Bordeaux I
%U http://archive.numdam.org/item/JTNB_2001__13_2_633_0/
%G en
%F JTNB_2001__13_2_633_0
Yamamura, Ken. Maximal unramified extensions of imaginary quadratic number fields of small conductors, II. Journal de théorie des nombres de Bordeaux, Tome 13 (2001) no. 2, pp. 633-649. http://archive.numdam.org/item/JTNB_2001__13_2_633_0/

[1] E. Benjamin, F. Lemmermeyer, C. Snyder, Imaginary quadratic fields k with cyclic Cl2(k1). J. Number Theory 67 (1997), 229-245. | MR | Zbl

[2] F. Gerth, III, The 4-class ranks of quadratic extensions of certain real quadratic fields. J. Number Theory 33 (1989), 18-39. | MR | Zbl

[3] H. Kisilevsky, Number fields with class number congruent to 4 mod 8 and Hilbert's Theorem 94. J. Number Theory 8 (1976), 271-279. | MR | Zbl

[4] S.E. Lamacchia, Polynomials with Galois group PSL(2,7). Comm. Algebra 8 (1980), 983-992. | MR | Zbl

[5] Y. Lefeuvre, S. Louboutin, The class number one problem for dihedral CM-fields. In: Algebraic number theory and Diophantine analysis, F. Halter-Koch and R. F. Tichy eds. (Graz, 1998), de Gruyter, Berlin, 2000, 249-275. | MR | Zbl

[6] F. Lemmermeyer, Ideal class groups of cyclotomic number fields. I. Acta Arith. 72 (1998), 59-70. | MR | Zbl

[7] S. Louboutin, The class number one problem for the dihedral and dicyclic CM-fields. Colloq. Math. 80 (1999), 259-265. | MR | Zbl

[8] S. Louboutin, R. Okazaki, Determination of all non-normal quartic CM-fields and of all non-abelian normal octic CM-fields with class number one. Acta Arith. 67 (1994), 47-62. | MR | Zbl

[9] A.M. Odlyzko, Some analytic estimates of class numbers and discriminants. Invent. Math. 29 (1975), 275-286. | MR | Zbl

[10] A.M. Odlyzko, Discriminant bounds, (unpublished tables), Nov. 29th 1976; available from http://www.dtc.umn.edu/odlyzko/unpublished/index.html

[11] I. Schur, Über die Darstellung der symmetrischen und alternierenden Gruppe durch gebrochene lineare substitutionen. J. Reine Angew. Math. 139 (1911), 155-250. | JFM

[12] M. Suzuki, Group theory. I Grundlehren der Mathematischen Wissenschaften 247, Springer-Verlag, Berlin-New York, 1982. | MR | Zbl

[13] K. Uchida, Class numbers of imaginary abelian number fields. I. Tôhoku Math. J. (2) 23 (1971), 97-104. | MR | Zbl

[14] Y. Yamamoto, Divisibility by 16 of class numbers of quadratic fields whose 2-class groups are cyclic. Osaka J. Math. 21 (1984), 1-22. | MR | Zbl

[15] K. Yamamura, Maximal unramified extensions of imaginary quadratic number fields of small conductors. J. Théor. Nombres Bordeaux 9 (1997), 405-448. | Numdam | MR | Zbl

[16] K. Yamamura, Maximal unramified extensions of real quadratic number fields of small conductors, in preparation.

[17] H.-S. Yang, S.-H. Kwon, The non-normal quartic CM-fields and the octic dihedral CM-fields with class number two. J. Number Theory 79 (1999), 175-193. | MR | Zbl