En généralisant un résultat de Pourchet, nous démontrons que si sont deux sommes de puissances définies sur , satisfaisant certaines conditions nécessaires, la longueur de la fraction continue pour tend vers l’infini pour . On déduira ce résultat d’une inégalité de type Thue uniforme pour les approximations rationnelles des nombres de la forme .
Generalizing a result of Pourchet, we show that, if are power sums over satisfying suitable necessary assumptions, the length of the continued fraction for tends to infinity as . This will be derived from a uniform Thue-type inequality for the rational approximations to the rational numbers , .
@article{JTNB_2005__17_3_737_0, author = {Corvaja, Pietro and Zannier, Umberto}, title = {On the length of the continued fraction for values of quotients of power sums}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {737--748}, publisher = {Universit\'e Bordeaux 1}, volume = {17}, number = {3}, year = {2005}, doi = {10.5802/jtnb.517}, zbl = {05016584}, mrnumber = {2212122}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/jtnb.517/} }
TY - JOUR AU - Corvaja, Pietro AU - Zannier, Umberto TI - On the length of the continued fraction for values of quotients of power sums JO - Journal de théorie des nombres de Bordeaux PY - 2005 SP - 737 EP - 748 VL - 17 IS - 3 PB - Université Bordeaux 1 UR - http://archive.numdam.org/articles/10.5802/jtnb.517/ DO - 10.5802/jtnb.517 LA - en ID - JTNB_2005__17_3_737_0 ER -
%0 Journal Article %A Corvaja, Pietro %A Zannier, Umberto %T On the length of the continued fraction for values of quotients of power sums %J Journal de théorie des nombres de Bordeaux %D 2005 %P 737-748 %V 17 %N 3 %I Université Bordeaux 1 %U http://archive.numdam.org/articles/10.5802/jtnb.517/ %R 10.5802/jtnb.517 %G en %F JTNB_2005__17_3_737_0
Corvaja, Pietro; Zannier, Umberto. On the length of the continued fraction for values of quotients of power sums. Journal de théorie des nombres de Bordeaux, Tome 17 (2005) no. 3, pp. 737-748. doi : 10.5802/jtnb.517. http://archive.numdam.org/articles/10.5802/jtnb.517/
[BCZ] Y. Bugeaud, P. Corvaja, U. Zannier, An upper bound for the G.C.D. of and . Math. Z. 243 (2003), 79–84. | MR | Zbl
[C] P. Corvaja, Une application nouvelle de la méthode de Thue. Annales de l’Institut Fourier 45 (1995), 1177–1203. | Numdam | MR | Zbl
[CZ1] P. Corvaja, U. Zannier, Diophantine equations with power sums and Universal Hilbert Sets. Indag. Mathem., N.S. 9 (3) (1998), 317–332. | MR | Zbl
[CZ2] P. Corvaja, U. Zannier, Finiteness of integral values for the ratio of two linear recurrences. Invent. Math. 149 (2002), 431–451. | MR | Zbl
[CZ3] P. Corvaja, U. Zannier, On the greatest prime factor of . Proc. Amer. Math. Soc. 131 (2003), 1705–1709. | MR | Zbl
[CZ4] P. Corvaja, U. Zannier, Some New Applications of the Subspace Theorem. Compositio Math. 131 (2002), 319–340. | MR | Zbl
[E] Y.-H. Evertse, On sums of -units and linear recurrences. Compositio Math. 53 (1984), 225–244. | Numdam | MR | Zbl
[G] G. Grisel, Length of the powers of a rational fraction. J. Number Theory, 62 (1997), 322–337. | MR | Zbl
[M] M. Mendès-France, Quelques problèmes relatifs à la théorie des fractions continues limitées. Sém. Delange-Pisot-Poitou, 13e année (1971/72), Théorie des nombres, 1, Exp. No. 2, Secrétariat Mathématique, Paris, 1973. | Numdam | MR | Zbl
[M2] M. Mendès-France, Sur les fractions continues limitées. Acta Arith. 23 (1973), 207–215. | MR | Zbl
[M3] M. Mendès-France, Remarks and problems on finite and periodic continued fractions. L’Enseignement Math. 39 (1993) 249–257. | MR | Zbl
[R] D. Ridout, The -adic generalization of the Thue-Siegel-Roth theorem. Mathematika 5 (1958), 40–48. | MR | Zbl
[S1] A. Schinzel, On some problems of the arithmetical theory of continued fractions. Acta Arith. 6 (1961), 393–413. | MR | Zbl
[S2] A. Schinzel, On some problems of the arithmetical theory of continued fractions II. Acta Arith. 7 (1962), 287–298. | MR | Zbl
[Schm1] W.M. Schmidt, Diophantine Approximation. Springer LNM 785, 1980. | MR | Zbl
[Schm2] W.M. Schmidt, Diophantine Approximations and Diophantine Equations. Springer Verlag LN 1467, 1991. | MR | Zbl
[V] P. Vojta, Roth’s theorem with moving targets. Internat. Math. Res. Notices 3 (1996) 109–114. | MR | Zbl
[Z] U. Zannier, Some applications of Diophantine Approximation to Diophantine Equations. Forum Editrice, Udine, 2003.
Cité par Sources :