Semidiscrete and single step fully discrete approximations for second order hyperbolic equations
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 13 (1979) no. 2, p. 75-100
@article{M2AN_1979__13_2_75_0,
     author = {Baker, Garth A. and Bramble, James H.},
     title = {Semidiscrete and single step fully discrete approximations for second order hyperbolic equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {13},
     number = {2},
     year = {1979},
     pages = {75-100},
     zbl = {0405.65057},
     mrnumber = {533876},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1979__13_2_75_0}
}
Baker, Garth A.; Bramble, James H. Semidiscrete and single step fully discrete approximations for second order hyperbolic equations. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 13 (1979) no. 2, pp. 75-100. http://www.numdam.org/item/M2AN_1979__13_2_75_0/

1 I Babuska, Survey Lectures on the Mathematical Foundations of the finite element method, in « The Mathematical Foundations of the finite element method wit applications to partial differential equations », A K Aziz, e d , Academic Press, New York, 1972 | MR 421106 | Zbl 0268.65052

2 I Babuska, The finite element method with Lagrangian multipliers, Numer Math , 20, 1973, p 179-192 | MR 359352 | Zbl 0258.65108

3 G A Baker, Error estimates for finite element methods for second order hyperbolic equations, S I A M , J Numer Anal, 13, n° 4, 1976, p 564-576 | MR 423836 | Zbl 0345.65059

4 G A Baker, Finite element-Galerkin approximations for hyperbolic equations with discontinuons coefficients, Tech Rep Math , École Polytechnique de Lausanne, 1973

5 G A Baker, J H Bramble, V Thomee, Single step Galerkin approximations for parabolic equations Math Cornp 31, n° 140 1977 p 818-847 | MR 448947 | Zbl 0378.65061

6 J H Bramble, J Osborn, Rate of convergence estimates for nonself-adjoint eigen-value approximations, Math Comp, 27, n° 123, 1973, p 525-549 | MR 366029 | Zbl 0305.65064

7 J H Bramble, V Thomee, Discrete time Galerkin methods for a par abolie boundary value problem, Ann Mat Pura Appl, Serie IV, 101, 1974, p 115-152 | MR 388805 | Zbl 0306.65073

8 M Crouzeix, Sur l'approximation des equations differentielles operationnelles lineaires par des methodes de Runge-Kutta, These, Univ de Pans VI, 1975

9 T Dupont, L 2 estimates for Galerkin methods for second order hyperbolic equations, S I A M , J Numer Anal, 10, n° 5, 1973, p 880-889 | MR 349045 | Zbl 0239.65087

10 J Nitsche, Uber ein Vartationspnnzip zur Losung von Dirichlet-Problemen bei Verwendung von Teilraumen, die keinen Randbedingungen unterworfen sind, A B H Math Sem, Univ Hamburg, 36, 1971, p 9-15 | MR 341903 | Zbl 0229.65079

11 J Nïtsche, On Dinchlet problems using subspaces with nearly zero boundary conditions, in « The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations », A K Aziz, ed , Academic Press, New York, 1972, p 603-627 | MR 426456 | Zbl 0271.65059

12 S P Nørsett, One step methods of Hermite type for numencal integration of stiff systems, B I T 14, 1974, p 63-77 | MR 337014 | Zbl 0278.65078

13 R S Varga, Matrix iterative analysis, Prentice Hall, Englewood Cliffs, N J , 1962 | MR 158502 | Zbl 0133.08602