Two mixed finite element methods for the simply supported plate problem
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 17 (1983) no. 4, p. 337-384
@article{M2AN_1983__17_4_337_0,
     author = {Bramble, James H. and Falk, Richard S.},
     title = {Two mixed finite element methods for the simply supported plate problem},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {17},
     number = {4},
     year = {1983},
     pages = {337-384},
     zbl = {0536.73063},
     mrnumber = {713765},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1983__17_4_337_0}
}
Bramble, James H.; Falk, Richard S. Two mixed finite element methods for the simply supported plate problem. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 17 (1983) no. 4, pp. 337-384. http://www.numdam.org/item/M2AN_1983__17_4_337_0/

[1] O. Axelsson, Solution of linear systems of equations : iterative methods, Sparse Matrix Techniques, V. A. Barker (editor), Lecture Notes in Mathematics 572, Springer-Verlag, 1971. | MR 448834 | Zbl 0354.65021

[2] I. Babuška and A. K. Aziz, Survey lectures on the mathematical foundations of the finite element method, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A. K. Aziz (Editor), Academic Press, New York, 1972. | MR 421106 | Zbl 0268.65052

[3] I. Babuška, The finite element method with Lagrangian multipliers, Numer. Math. 20 (1973), pp. 179-192. | MR 359352 | Zbl 0258.65108

[4] J. H. Bramble and J. E. Osborn, Rate of convergence estimates for nonselfadjoint eigenvalue approximations, Math. Comp. 27 (1973), pp. 525-549. | MR 366029 | Zbl 0305.65064

[5] J. H. Bramble and L. E. Payne, Some Uniqueness Theorems in the Theory of Elasticity, Arch. for Rat. Mech. and Anal., 9 (1962), pp. 319-328. | MR 143374 | Zbl 0103.40402

[6] J. H. Bramble and L. R. Scott, Simultaneous approximation in scales of Banach spaces, Math. Comp. 32 (1978), pp. 947-954. | MR 501990 | Zbl 0404.41005

[7] J. H. Bramble, The lagrange multiplier method for Dirichlet's problem, Math. Comp. 37 (1981), pp. 1-11. | MR 616356 | Zbl 0477.65077

[8] P. G. Ciarlet and P. A. Raviart, A mixed finite element method for the biharmonic equation, Symposium on Mathematical Aspects of Finite Elements in Partial Differential Equations, C. DeBoor, Ed., Academic Press, New York, 1974, pp. 125-143. | MR 657977 | Zbl 0337.65058

[9] P. G. Ciarlet and R. Glowinski, Dual iterative techniques for solving a finite element approximation of the biharmonic equation, Comput. Methods Appl. Mech. Engrg., 5 (1975), pp. 277-295. | MR 373321 | Zbl 0305.65068

[10] R. S. Falk, Approximation of the biharmonic equation by a mixed finite element method, SIAM J. Numer. Anal., 15 (1978), pp. 556-567. | MR 478665 | Zbl 0383.65059

[11] R. Glowinski and O. Pironneau, Numerical Methods for the first biharmonic equation and for the two-dimensional Stokes problem, SIAM Review, 21 (1979), pp. 167-212. | MR 524511 | Zbl 0427.65073

[12] J. L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, vol. 1, Dunod, Paris, 1968. | MR 247243 | Zbl 0165.10801

[13] M. Schechter, On On L p estimates and regularity II, Math. Scand. 13 (1963), pp. 47-69. | MR 188616 | Zbl 0131.09505

[14] R. Weinstock, Calculus of Variations, McGraw-Hill, New York, 1952. | Zbl 0049.19503