Practical optimal regularization of large linear systems
ESAIM: Modélisation mathématique et analyse numérique, Tome 20 (1986) no. 1, pp. 75-87.
@article{M2AN_1986__20_1_75_0,
     author = {Girard, Didier},
     title = {Practical optimal regularization of large linear systems},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {75--87},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {20},
     number = {1},
     year = {1986},
     mrnumber = {844517},
     zbl = {0596.65024},
     language = {en},
     url = {http://archive.numdam.org/item/M2AN_1986__20_1_75_0/}
}
TY  - JOUR
AU  - Girard, Didier
TI  - Practical optimal regularization of large linear systems
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1986
SP  - 75
EP  - 87
VL  - 20
IS  - 1
PB  - AFCET - Gauthier-Villars
PP  - Paris
UR  - http://archive.numdam.org/item/M2AN_1986__20_1_75_0/
LA  - en
ID  - M2AN_1986__20_1_75_0
ER  - 
%0 Journal Article
%A Girard, Didier
%T Practical optimal regularization of large linear systems
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1986
%P 75-87
%V 20
%N 1
%I AFCET - Gauthier-Villars
%C Paris
%U http://archive.numdam.org/item/M2AN_1986__20_1_75_0/
%G en
%F M2AN_1986__20_1_75_0
Girard, Didier. Practical optimal regularization of large linear systems. ESAIM: Modélisation mathématique et analyse numérique, Tome 20 (1986) no. 1, pp. 75-87. http://archive.numdam.org/item/M2AN_1986__20_1_75_0/

[1] C. H. Reinsch, Smoothing by spline functions II. Numer. Math., 16 (1971), pp. 451-454. | MR

[2] G. Wahba, Smoothing noisy data with spline functions. Numer. Math., 24 (1975),pp. 383-393. | MR | Zbl

[3] P. Wahba, Practical approximate solutions to linear operator équations when the data are noisy. SIAM, J. Num. Anal. 14 (1977), 651-667. | MR | Zbl

[4] P. Craven, G. Wahba, Smoothing noisy data with spline functions. Numer. Math. 31 (1979) 377-403. | MR | Zbl

[5] M. Stone, Cross-validatory choice and assessment of statistical prediction (with discussion). J. Roy. Statist. Soc, Ser. B, 36 (1974) pp. 111-147. | MR | Zbl

[6] G. Golub, C. Reinsch, Singular value decomposition and least square solution. Numer. Math. 14, 403-420 (1970). | MR | Zbl

[7] R. Allemand et al., A new time-of-flight method for positron computed tomography in D. A. B. Lindberg and P. L. Reichertz Eds., Biomedical Images and Computers. Berlin : Springer, 1980.

[8] D. Girard, Les méthodes de régularisation optimale et leurs applications en tomographie. Thesis, University of Grenoble, 1984.