Practical optimal regularization of large linear systems
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 20 (1986) no. 1, p. 75-87
@article{M2AN_1986__20_1_75_0,
     author = {Girard, Didier},
     title = {Practical optimal regularization of large linear systems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {20},
     number = {1},
     year = {1986},
     pages = {75-87},
     zbl = {0596.65024},
     mrnumber = {844517},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1986__20_1_75_0}
}
Girard, Didier. Practical optimal regularization of large linear systems. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 20 (1986) no. 1, pp. 75-87. http://www.numdam.org/item/M2AN_1986__20_1_75_0/

[1] C. H. Reinsch, Smoothing by spline functions II. Numer. Math., 16 (1971), pp. 451-454. | MR 1553981

[2] G. Wahba, Smoothing noisy data with spline functions. Numer. Math., 24 (1975),pp. 383-393. | MR 405795 | Zbl 0299.65008

[3] P. Wahba, Practical approximate solutions to linear operator équations when the data are noisy. SIAM, J. Num. Anal. 14 (1977), 651-667. | MR 471299 | Zbl 0402.65032

[4] P. Craven, G. Wahba, Smoothing noisy data with spline functions. Numer. Math. 31 (1979) 377-403. | MR 516581 | Zbl 0377.65007

[5] M. Stone, Cross-validatory choice and assessment of statistical prediction (with discussion). J. Roy. Statist. Soc, Ser. B, 36 (1974) pp. 111-147. | MR 356377 | Zbl 0308.62063

[6] G. Golub, C. Reinsch, Singular value decomposition and least square solution. Numer. Math. 14, 403-420 (1970). | MR 1553974 | Zbl 0181.17602

[7] R. Allemand et al., A new time-of-flight method for positron computed tomography in D. A. B. Lindberg and P. L. Reichertz Eds., Biomedical Images and Computers. Berlin : Springer, 1980.

[8] D. Girard, Les méthodes de régularisation optimale et leurs applications en tomographie. Thesis, University of Grenoble, 1984.