@article{M2AN_1986__20_3_461_0, author = {Ishihara, Kazuo}, title = {Finite element solutions for radiation cooling problems with nonlinear boundary conditions}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {461--477}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {20}, number = {3}, year = {1986}, mrnumber = {862787}, zbl = {0618.65100}, language = {en}, url = {http://archive.numdam.org/item/M2AN_1986__20_3_461_0/} }
TY - JOUR AU - Ishihara, Kazuo TI - Finite element solutions for radiation cooling problems with nonlinear boundary conditions JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1986 SP - 461 EP - 477 VL - 20 IS - 3 PB - AFCET - Gauthier-Villars PP - Paris UR - http://archive.numdam.org/item/M2AN_1986__20_3_461_0/ LA - en ID - M2AN_1986__20_3_461_0 ER -
%0 Journal Article %A Ishihara, Kazuo %T Finite element solutions for radiation cooling problems with nonlinear boundary conditions %J ESAIM: Modélisation mathématique et analyse numérique %D 1986 %P 461-477 %V 20 %N 3 %I AFCET - Gauthier-Villars %C Paris %U http://archive.numdam.org/item/M2AN_1986__20_3_461_0/ %G en %F M2AN_1986__20_3_461_0
Ishihara, Kazuo. Finite element solutions for radiation cooling problems with nonlinear boundary conditions. ESAIM: Modélisation mathématique et analyse numérique, Tome 20 (1986) no. 3, pp. 461-477. http://archive.numdam.org/item/M2AN_1986__20_3_461_0/
[1] Sobolev SpacesSobolev Spaces, Academic Press, New York, 1975. | MR | Zbl
,[2] On a conservative upwind finite element scheme forconvective diffusion equations, RAIRO Anal. Numér. 1515 (1981), 3-25. | Numdam | MR | Zbl
and ,[3] Discrete maximum principle for finite-difference operators, Aequationes Math. 44 (1970), 338-352. | MR | Zbl
,[4] The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. | MR | Zbl
,[5] Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Engrg. 2 (1973), 17-31. | MR | Zbl
and ,[6] Generalized radiation cooling of a convex solid, J. Math. Anal. Appl. 35 (1971), 503-511. | MR | Zbl
,[7] Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, New Jersey, 1964. | MR | Zbl
,[8] Some remarks on finite element analysis of time-dependent field problems, Theory and Practice in Finite Element Structural Analysis (ed. by Yamada, and Gallagher, R. H.), 91-106, Univ. of Tokyo Press, Tokyo, 1973. | Zbl
,[9] On finite element schemes of the Dirichlet problem for a system of nonlinear elliptic equations, Numer. Funct. Anal. Optim. 3 (1981), 105-136. | MR | Zbl
,[10] Finite element approximations applied to the nonlinear boundary value problem , Publ. Res. Inst. Math. Sci. 18 (1982), 17-34. | MR | Zbl
,[11] Monotone explicit iterations of the finite element approximations for the nonlinear boundary value problem, Numer. Math. 43 (1984), 419-437. | MR | Zbl
,[12] Explicit iterations with monotonicity for finite element approximations applied to a system of nonlinear elliptic equations, J. Approx. Theory 44 (1985), 241-252. | MR | Zbl
,[13] Heat transfer between solids and gases under nonlinear boundary conditions, Quart. Appl. Math. 9 (1951), 163-184. | MR | Zbl
and ,[14] Temperature distribution in a convex solid with nonlinear radiation boundary condition, J. Math. Mech. 15 (1966), 899-908. | MR | Zbl
,[15] Numerical Analysis, Academic Press, New-York, 1972. | MR | Zbl
,[16] Maximum Principles in Differential Equations, Prentice-Hall, Englewood Cliffs, New Jersey, 1967. | MR | Zbl
and ,[17] Hilbert Space Methods for Partial Differential Equations, Pitman Press, London, 1977. | MR | Zbl
,[18] Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble) 15 (1965), 189-258. | Numdam | MR | Zbl
,[19] The change in solution due to change in domain, Proc. Sympos. Pure Math. on Partial Differential Equations, 23 (1973), 199-205. | MR | Zbl
and ,[20] Uniform convergence of the upwind finite element approximation for semilinear parabolic problems, J. Math. Kyoto Univ. 18 (1978), 327-351. | MR | Zbl
,[21] Polygonal domain approximation in Dirichlet's problem, J. Inst. Math. Appl. 11 (1973), 33-44. | MR | Zbl
,[22] Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, New Jersey, 1962. | MR | Zbl
,