Une méthodologie du calcul hardware des fonctions élémentaires
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 20 (1986) no. 4, p. 667-695
@article{M2AN_1986__20_4_667_0,
     author = {Muller, Jean-Michel},
     title = {Une m\'ethodologie du calcul hardware des fonctions \'el\'ementaires},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {20},
     number = {4},
     year = {1986},
     pages = {667-695},
     zbl = {0609.65010},
     mrnumber = {877060},
     language = {fr},
     url = {http://www.numdam.org/item/M2AN_1986__20_4_667_0}
}
Muller, Jean-Michel. Une méthodologie du calcul hardware des fonctions élémentaires. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 20 (1986) no. 4, pp. 667-695. http://www.numdam.org/item/M2AN_1986__20_4_667_0/

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions withformulas, graphs, and mathematical tables, Nat. Bur. Standards, Appl. Math. Series, 55, Washington D.C., 1964. | Zbl 0643.33001

[2] H. M. Ahmed, J. M. Delosme, M. Morf, Highly concurrent Computing structures or matrix arithmetic and signal processing, Computer, Jan. 1982.

[3] F. Anceau, Architecture and design of Von Neumann microprocessors, Nato advanced summer institute, July 1980.

[4] M. Andrews and T. M R A Z, Unified elementary function generator, Microprocessors and Microsystems, Vol. 2 n° 5, Oct. 1978, pp. 270-274.

[5] P. W. Baker, More efficient radix-2 algorithms for some elementary functions, IEEE Trans, on computers, vol. c-24 n° 11, Nov. 1975, pp. 1049-1054. | MR 386336 | Zbl 0324.68040

[6] P. W. Baker, Suggestion for a fast binary Sine/Cosine generator, IEEE Trans, on Computers, Nov. 1976, pp. 1134-1136.

[7] R. P. Brent, Multiple-precision zero-finding methods and the complexity of elementary function evaluation, Analytic Computational Complexity (Ed. by J. F. Traub), Academic Press, New York, 1975, pp. 151-176. | MR 423869 | Zbl 0342.65031

[8] R. P. Brent, Fast multiple-precision evaluation of elementary functions, J. ACM 23, 1976, pp. 242-251. | MR 395314 | Zbl 0324.65018

[9] R. P. Brent, Unrestricted algorithms for elementary and special functions, Information Processing 80, S. H. Lavington ed., North-Holland Publishing Comp., pp. 613-619. | Zbl 0442.65013

[10] T. H. Chan and O. H. Ibarra, On the space and time complexity of functions computable by sample programs, Siam J. Comput, Vol. 12, n° 4, Nov. 1983. | MR 721008 | Zbl 0524.68030

[11] T. C. Chen, Automatic computation of exponentials, logarithms, ratios and square roots. IBM J. Res. and Development, Vol. 16, July 1972, pp. 380-388. | MR 336965 | Zbl 0257.68057

[12] C. W. Clenshaw and F. W. J. Olver, Bzyond floating point, J. of the ACM,Vol. 31, n° 2, April 1984, pp. 319-328. | MR 819141 | Zbl 0628.65037

[13] W. Cody and W. Waite, Software manual for the elementary functions, Prentice-Hall, inc, Englewood cliffs, New-Jersey, 1980. | Zbl 0468.68036

[14] W. Cody, Implementation and testing of function software, ibid.Ibid.

[15] W. Cody, Basic concepts for computational software, Ibid.Ibid.

[16] W. Cody, Performance testing of function subroutines, AFIPS Conf. Proc , Vol. 34,1969 SJCC, AFIPS Press, Montvale, N.J., 1969, pp. 759-763.

[17] J. T. Coonen, An implementation guide to a proposed standard for floating-point arithmetic, IEEE Computer, Jan. 1980.

[18] J M Delosme, VLSI implementatwn of rotations in pseudo-euchdian space, proc 1983 IEEE Int Conf on ASSP, Boston, April 1983, pp 927-930

[19] J M Delosme, The matrix exponential approach to elementary operations, Depart of Electrical Engineering, Yale Univ, NewHaven

[20] B De Lugish, A class of algorithms for automatic evaluation of certain elementar functions in a binary computer, Ph D dissertation, Dep Computer sci, Univ of Illinois, Urbana, June 1970

[21] B Derrida, A Gervois, Y Pomeau, Iteration of endomorphisms on thereal axis and representation of numbers Commissariat à l'énergie Atomique, Service de physique théorique, CEN Saclay | Numdam | Zbl 0416.28012

[22] A M Despain, Fourier transform computers using CORDIC iterations, IEEE Trans on Computers, Vol c-23 n° 10,Oct 1974 | Zbl 0287.65073

[23] A M Despain, Pipeline and parallel-pipeline FFT Processors for VLSI implementations, IEEE Trans on Computers, Vol c-33 n° 5, May 1984 | Zbl 0528.68019

[24] M D Ercegovac, Radix-16 evaluation of certain elementary functions, IEEE Trans on Computers, Vol c-22 n° 16, June 1973 | Zbl 0257.68052

[25] M D Ercegovac, A general method for évaluation of functions in a digital computer, Computer sci dep , School of Engineering & Applied science, Univ of California, Los Angeles, Cahfornia 90024

[26] C T Fike, Computational evaluation of math functions, Prentice-Hall, Englewoodcliffs, New-Jersey, 1968 | Zbl 0205.19301

[27] W M Gentleman, More on algorithms that reveal properties of floating-point arithmetics units, Comm of the ACM, Vol 17, n° 5, May 1974

[28] G W Gerrity, Computer representation of real numbers, IEEE Trans Computers, Vol c-31 n° 8, Aug 1982 | Zbl 0488.68039

[29] G H Haviland and A Tuszynsky, A CORDIC arithmetic processor chip, IEEE Trans on Computers, Vol c-29 n° 2, Feb 1980

[30] J F Hart, E W Chene, C L Lawson, H J Maehly, C Kmesztenyi, J Rrice, H Ctacher Jr, and Cwitzgall, Computer Approximations, Wiley NY, 1968

[31] J P Kahone and R Salem, Ensembles parfaits et séries trigonométriques, Actualités scientifiques et industrielles 1301, Hermann Pans, 1963 | MR 160065 | Zbl 0112.29304

[32] A H Karp, Exponential and logarithm by sequential squaring, IEEE Trans on Computers, Vol c-33, n° 5, May 1984, pp 462-464

[33] D E Knuth, The art of computer programming, Vol 2, Addison Wesley, ReadingD E KNUTH, Mass , 1969 | MR 633878 | Zbl 0191.18001

[34] J Kropa, Calculator algorithms, Math Mag , Vol 51 n° 2, March 1978, pp 106-109 | MR 1572257 | Zbl 0397.65082

[35] J D Marasa and D W Matula, A simulated study of correlated error propagation in various finite-precision arithmetic, IEEE Trans on Computers, Vol c-22, n° 6, June 1973 | Zbl 0257.65043

[36] C Masse, L'itération de Newton convergence et chaos, these de troisième cycle Université Grenoble I, Oct 1984

[37] D W Matula, Basic digit sets for radix representation, J of the ACM, Vol 29n°4,Oct 1982, pp 1131-1143 | MR 674260 | Zbl 0509.10008

[38] J E Meggitt, Pseudo Division and Pseudo Multiplication Processes, IBM of Res and Dev , Vol 6, April 1962, pp 210-227 | Zbl 0201.48709

[39] J M Muller, Discrete basis and computation of elementary functions, IEEE Trans on Computers, Sept 1985, pp 857-862 | MR 810091

[40] J. M. Muller, Conditionnement de fonctions et représentation flottante des nombres réels, RR Math. App. n°453, Grenoble, 1984.

[41] J. M. Muller, A hardware algorithm for Computing the complex exponential fonction, RMath. App. n° 467, Grenoble, 1984

[42] A. Naseem and P. D. Fisher, A modified CORDIC Algorithm, Preprint Dept. of Electrical Engineering and Systems Science, Michigan State Univ., East Lansing, Michigan 48824.

[43] F. W. J. Olver, A new approach to error arithmetic, SIAM J. Numer. Analysis, Vol. 15 n° 2, April 1978. | MR 483379 | Zbl 0385.65019

[44] G. Paul and W. Wayne Wilson , Should the elementary function library be incorporated into computer instruction sets, ACM Trans, on Math. Software, Vol. 2 n° 2, June 1976, pp. 132-142.

[45] W. Parry, On the ß-expansion of real numbers, Acta math. acad. sci.Hung., 11, 1960, pp. 401-416. | MR 142719 | Zbl 0099.28103

[46] M. Pichat, Contribution à l'étude des erreurs d'arrondi en arithmétique à virgule flottante, thèse d'état, Grenoble, France, 1976.

[47] A. Renyi, Representations for real numbers and their ergodic functions, Acta. Math.Acad. Sci. Hungary, 1957, pp. 477-493. | MR 97374 | Zbl 0079.08901

[48] A. Renyi, On the distribution of the digits in Cantor's series, Mat. Lapok 7, 1956 pp. 77-100. | MR 99968 | Zbl 0075.03703

[49] F. Robert, Itération machine d'une fonction affine, RR Math. App.n°440, IMAG, Grenoble, France.

[50] B. P. Sarkar and E. V. Krishnamurthy, Economic pseudodivision processes for obtaining square root, logarithm and arctan, IEEE Trans, onComputers, Dec. 1971, pp. 1589-1593. | Zbl 0229.68007

[51] C. W. Schelin, Calculator function approximation, Amer. Math. Monthly 90,5, May 1983. | MR 701572 | Zbl 0532.65012

[52] H. Schmid and A. Bogocki, Use decimal CORDIC for generation of many transcendental functions, Electrical design mag., Feb. 1973, pp. 64-73.

[53] O. Spaniol, Computer arithmetic and design, J. Wiley & Sons, 1981. | MR 611684 | Zbl 0493.68007

[54] W. H. Specker, A Class of algorithms for In (JC), exp(x), sin(x), cos(x), arctan(x) and arcot(x), IEEE Trans, on electronic computers, Vol. ec-14, 1965, pp. 85-86. | Zbl 0146.14805

[55] C. Tricot, Mesures et dimensions, Thèse d'état, Université Paris-sud, centre d'Orsay, Paris, Dec. 1983.

[56] J. M. Trio, Microprocesseurs 8086-8088 Architecture et programmation, Copro-cesseur de calcul 8087, Éditions Eyrolles, Paris, 1984.

[57] J. Volder, The CORDIC Computing technique, IRE Trans, on Computers,Vol. ec-8, Sept. 1959, pp. 330-334.

[58] J. Walther, A Unified algorithm for elementary functions, Joint Computer Conference Proceedings, Vol. 38, pp. 379-385. | Zbl 0279.68032

[59] E. H. Wold, Pipeline and parallel-pipeline FFT processors for VLSI implementations, IEEE Trans. on Computers, Vol. c-33 n°5, May 1984. | Zbl 0528.68019