Error analysis for spectral approximation of the Korteweg-de Vries equation
ESAIM: Modélisation mathématique et analyse numérique, Tome 22 (1988) no. 3, pp. 499-529.
@article{M2AN_1988__22_3_499_0,
     author = {Maday, Y. and Quarteroni, A.},
     title = {Error analysis for spectral approximation of the {Korteweg-de} {Vries} equation},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {499--529},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {22},
     number = {3},
     year = {1988},
     mrnumber = {958881},
     zbl = {0647.65082},
     language = {en},
     url = {http://archive.numdam.org/item/M2AN_1988__22_3_499_0/}
}
TY  - JOUR
AU  - Maday, Y.
AU  - Quarteroni, A.
TI  - Error analysis for spectral approximation of the Korteweg-de Vries equation
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1988
SP  - 499
EP  - 529
VL  - 22
IS  - 3
PB  - AFCET - Gauthier-Villars
PP  - Paris
UR  - http://archive.numdam.org/item/M2AN_1988__22_3_499_0/
LA  - en
ID  - M2AN_1988__22_3_499_0
ER  - 
%0 Journal Article
%A Maday, Y.
%A Quarteroni, A.
%T Error analysis for spectral approximation of the Korteweg-de Vries equation
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1988
%P 499-529
%V 22
%N 3
%I AFCET - Gauthier-Villars
%C Paris
%U http://archive.numdam.org/item/M2AN_1988__22_3_499_0/
%G en
%F M2AN_1988__22_3_499_0
Maday, Y.; Quarteroni, A. Error analysis for spectral approximation of the Korteweg-de Vries equation. ESAIM: Modélisation mathématique et analyse numérique, Tome 22 (1988) no. 3, pp. 499-529. http://archive.numdam.org/item/M2AN_1988__22_3_499_0/

[1] C. Bardos, Historique sommaire de l'équation de Korteweg-de Vries. Un exemple de l'interaction entre les mathématiques pures et appliques ; Publ. n°45 (1983), Université deParis Nord. | MR

[2] C. Bardos, Ondes solitaires et solitons ; Boll. U.M.I. 5, 16-A(1979), pp. 21-47. | MR | Zbl

[3] J. L. Bona, V. A. Dougalis & O. A. Karakashian, Fully discrete Galerkin methods for the Korteweg-de Vries équation, to appear in Comput. and Math. with applications 12 A. | MR | Zbl

[4] J. L. Bona, W. G. Pritchard & L. R. Scott, Numerical schemes for a model nonlinear, dispersive wave ; to appear in J. Comput. Phys. | MR | Zbl

[5] J. L. Bona & R. Smith, The nitial value problem for the Korteweg-de Vries equations ; Phil. Roy. Soc. London, 278 (1975), pp. 555-604. | MR | Zbl

[6] C. Canuto, M. Y. Hussaini, A. Quarteroni & T. A. Zang, Spectral Methods in Fluid Dynamics ; Springer-Verlag, Berlin, 1988. | MR | Zbl

[7] T. F. Chan & T. Kerkhoven, Fourier methods with extended stability intervals for the Korteweg-de Vries equation; S.I.A.M. J. Numer. Anal. 22 (1985), pp. 441-454. | MR | Zbl

[8] B. Fornberg, Numerical computation of nonlinear waves ; Technical Report Plenum, Nonlinear Phenomena in Physics and Biology (1981). | MR | Zbl

[9] B. Fornberg & F. R. S. Whitham, A numerical and theoretical study of certain nonlinear phenomena ; Phil. Trans. Roy. Soc. 289 (1978), pp. 373-404. | MR | Zbl

[10] D. Jackson, The Theory of Approximation, A.M. S. Colloquium publications, vol. XI (1930), New York. | JFM

[11] D. J. Korteweg & G. De Vries, On the change of form of long waves advancing in rectangular canal, and on a new type of long stationary waves ; Philos. Mag. (1895), pp. 422-443. | JFM

[12] J. L. Lions & E. Magenes, Honhomogeneous Boundary Value Problems and Applications, Vol. I, Springer Verlag (1972), Berlin, Heildelberg and New-York. | Zbl

[13] M. He Ping & G. Ben Yu, The Fourier pseudospectral method with a restrain operator for the Korteweg-deVries equation, J. Comp. Phys. 65 (1986), pp. 120-137. | MR | Zbl

[14] R. M. Mura, Korteweg-de Vries equation and generalization. I. A remarkable explicit nonlinear transformation ; J. Math. Phys. 9 (1968), pp. 1202-1204. | MR | Zbl

[15] R. M. Muira, The Korteweg-de Vries equation : A survey of results ; S.I.A.M. Review 18 (1976), pp. 412-459. | Zbl

[16] R. M. Miura, C. S. Gardner & M. D. Kruskal ; Korteweg-de Vries equation and generalization. II. Existence of conservation laws and constants of motion ; J. Math. Phys. 9 (1968), pp. 1204-1209. | MR | Zbl

[17] J. E. Pasciak, Spectral and pseudo-spectral methods for advection equation ; Math. comput. 35 (1980), pp. 1081-1092. | MR | Zbl

[18] J. E. Pasciak, Spectral method for a nonlinear initial value problem involving pseudo-differential operators ; S.I.A.M. J. Numer. Maths., 19, 1982, pp. 142-154. | MR | Zbl

[19] A. Quarteroni, Fourier spectral methods for pseudo-parabolic equations ; S.I.A.M. J. Numer. Anal. 24 (1987), pp. 323-335. | MR | Zbl

[20] H. Schamel & K. Elsässer, The application of spectral method to nonlinear wave propagation, J. Comp. Phys. 22 (1976), pp. 501-516. | MR | Zbl

[21] F. Tappert, Numerical solution of the Korteweg-de Vries equation and its generalizations by the split-step Fourier method, in Lecture in Nonlinear wave Motion, A.C. Newell, ed., Applied Mathematics, vol. 15,A.M.S., Providence, Rhode Island (1974), pp. 215-217. | Zbl

[22] R. Témam, Sur un problème non linéaire; J. Math. Pures Appl. 48 (1969), pp. 159-172. | MR | Zbl