@article{M2AN_1989__23_4_565_0, author = {Chavent, Guy and Cockburn, Bernardo}, title = {The local projection $P^0-P^1${-discontinuous-Galerkin} finite element method for scalar conservation laws}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {565--592}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {23}, number = {4}, year = {1989}, mrnumber = {1025072}, zbl = {0715.65079}, language = {en}, url = {http://archive.numdam.org/item/M2AN_1989__23_4_565_0/} }
TY - JOUR AU - Chavent, Guy AU - Cockburn, Bernardo TI - The local projection $P^0-P^1$-discontinuous-Galerkin finite element method for scalar conservation laws JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1989 SP - 565 EP - 592 VL - 23 IS - 4 PB - AFCET - Gauthier-Villars PP - Paris UR - http://archive.numdam.org/item/M2AN_1989__23_4_565_0/ LA - en ID - M2AN_1989__23_4_565_0 ER -
%0 Journal Article %A Chavent, Guy %A Cockburn, Bernardo %T The local projection $P^0-P^1$-discontinuous-Galerkin finite element method for scalar conservation laws %J ESAIM: Modélisation mathématique et analyse numérique %D 1989 %P 565-592 %V 23 %N 4 %I AFCET - Gauthier-Villars %C Paris %U http://archive.numdam.org/item/M2AN_1989__23_4_565_0/ %G en %F M2AN_1989__23_4_565_0
Chavent, Guy; Cockburn, Bernardo. The local projection $P^0-P^1$-discontinuous-Galerkin finite element method for scalar conservation laws. ESAIM: Modélisation mathématique et analyse numérique, Tome 23 (1989) no. 4, pp. 565-592. http://archive.numdam.org/item/M2AN_1989__23_4_565_0/
[1] Approximate Riemman Solvers and Numerical Flux Functions, ICASE report n° 84-63 (1984). | Zbl
and ,[2] Convergence et Stabilité des Schémas LRG, INRIA report.
and ,[3] A finite Element Method for the 1D Water Flooding Problem with Gravity, J. Comp. Phys., 45 (1982), pp. 307-344. | MR | Zbl
and ,[4] Le Schéma G-k/2 pour les Lois de Conservation Scalaires, Congrès National d'Analyse Numérique (1984), pp. 53-56.
,[5] The Quasi-Monotone schemes for Scalar Conservation Laws, IMA Preprint Séries n° 263, 268 and 277. To appear in SIAM J. Numer. Anal. | MR
,[6] On a class of high-resolution total-variation-stable finite-differene schemes, SIAM J. Numer. AnaL, 21 (1984), pp. 1-23. | MR | Zbl
,[7] An Analysis of the Discontinuous Galerkin Method for a Scalar Hyperbolic Equation, Math, of Comp., 46 (1986), pp.1-26. | MR | Zbl
and ,[8] A Numerical Conception of Entropy for Quasi-Linear Equations, Math. of Comp., 31 (1977), pp. 848-872. | MR | Zbl
,[9] On a Finite Element Method for Solving the Neutron Transport Equation, Mathematical Aspects of Finite Element in Partial Differential Equations, Academic Press, Ed. Carl de Boor, pp. 89-145. | Zbl
and ,[10] Convergence of Generalized MUSCL Schemes, SIAM J. Numer. Anal., 22 (1984), pp. 947-961. | MR | Zbl
,[11] Riemman Solvers, the Entropy Condition and Difference Approximations, SIAM J. Numer. Anal., 21 (1984), pp. 217-235. | MR | Zbl
,[12] Numerical Viscosity and the Entropy Condition for Conservative Difference Schemes, Math. Comp., 43 (1984), pp. 369-381. | MR | Zbl
,[13] Towards the Ultimate Conservative Scheme, II Monotonicity and Conservation Combined in a Second Order Scheme, J. Comput. Phys., 14 (1974), pp. 361-370. | Zbl
,