@article{M2AN_1990__24_2_197_0, author = {Bonnans, Joseph Fr\'ed\'eric}, title = {Th\'eorie de la p\'enalisation exacte}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {197--210}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {24}, number = {2}, year = {1990}, mrnumber = {1052147}, zbl = {0752.65051}, language = {fr}, url = {http://archive.numdam.org/item/M2AN_1990__24_2_197_0/} }
TY - JOUR AU - Bonnans, Joseph Frédéric TI - Théorie de la pénalisation exacte JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1990 SP - 197 EP - 210 VL - 24 IS - 2 PB - AFCET - Gauthier-Villars PP - Paris UR - http://archive.numdam.org/item/M2AN_1990__24_2_197_0/ LA - fr ID - M2AN_1990__24_2_197_0 ER -
Bonnans, Joseph Frédéric. Théorie de la pénalisation exacte. ESAIM: Modélisation mathématique et analyse numérique, Tome 24 (1990) no. 2, pp. 197-210. http://archive.numdam.org/item/M2AN_1990__24_2_197_0/
[1] Sufficient conditions for a globally exact penalty function without convexity, Math. Programming Study 19, 1-15, 1982. | MR | Zbl
, ,[2] Second order and related extremality conditions in nonlinear programming, J. Optim. Theory Appl. 31, 143-165, 1980. | MR | Zbl
,[3] Necessary and sufficient conditions for a penalty method to be exact, Math. Programming 9, 87-99, 1975. | MR | Zbl
,[4] Constrained optimization and Lagrange multiplier methods,Academic Press, New York, 1982. | MR | Zbl
,[5] Asymptotic stability of the unit stepsize in exact penalty methods,SIAM J. Cont. Optimiz. 27, 631-641, 1989. | MR | Zbl
,[6] Augmentability and exact penalisability in nonlinear programming under a weak second-order sufficiency condition, in rapport INRIA n° 548, 1986.
,[7] Une extension de la programmation quadratique successive, in « Lecture notes in control and information sciences n° 63 », A. Bensoussan et J. L. Lions ed., 16-31, Springer Verlag, Berlin, 1984. | MR | Zbl
, ,[8] On the stability of sets defined by a finite number of equalities and inequalities, soumis au J. Opt. Th. Appl. | Zbl
, ,[9] A lower bound for the controlling parameters of the exact penalty functions, Math. Programming 15, 278-290, 1978. | MR | Zbl
,[10] A new approach to Lagrange multipliers, Math. Oper. Res. 2, 165-174, 1976. | MR | Zbl
,[11] A global convergent method for nonlinear programming, J. Optim. Theory Appl. 22, 297-309, 1977. | MR | Zbl
,[12] Exact penalty functions in nonlinear programming, Math. Programming 17, 251-269, 1979. | MR | Zbl
, ,[13] Optimization theory : the finite dimensional case, J. Wiley & Sons, New York, 1975. | MR | Zbl
,[14] Necessary and sufficient conditions for a local minimum 1 : A reduction theorem and first order conditions, SIAM J. Control Opt. 17, 245-250, 1979. | MR | Zbl
,[15] Second order conditions for constrained minima, SIAM J. Applied Math. 15, 641-652, 1967. | MR | Zbl
,[16] The Fritz-John necessary optimality condition in the presence of equality and inequality constraints, J. Math. Anal. Appl. 7, 37-47, 1967. | MR | Zbl
, ,[17] A new constraint qualification condition, J. Optim. Th. Appl. 48,459-468, 1986. | MR | Zbl
,[18] An exact potential method for constrained maxima, SIAM J. Numer. Anal. 2, 299-304, 1969. | MR | Zbl
,[19] Méthodes numériques dans les problèmes d'extrémum, Mir, Moscou, 1965 (édition française : 1977). | Zbl
, ,[20] Stability theory for Systems of inequalities, part II : differentiable nonlinear Systems, SIAM J. Numerical Analysis 13, 497-513, 1976. | MR | Zbl
,[21] Convex Analysis, Princeton Univ. Press, Princeton, New Jersey, 1970. | Zbl
,[22] Augmented Lagrange multiplier functions and duality in nonconvex programming, SIAM J. Control 12, 268-285, 1974. | MR | Zbl
,[23] Exact penalty functions and stability in locally Lipschitz programming, Math. Programming 30, 340-356, 1984. | MR | Zbl
,