Théorie de la pénalisation exacte
ESAIM: Modélisation mathématique et analyse numérique, Tome 24 (1990) no. 2, pp. 197-210.
@article{M2AN_1990__24_2_197_0,
     author = {Bonnans, Joseph Fr\'ed\'eric},
     title = {Th\'eorie de la p\'enalisation exacte},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {197--210},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {24},
     number = {2},
     year = {1990},
     mrnumber = {1052147},
     zbl = {0752.65051},
     language = {fr},
     url = {http://archive.numdam.org/item/M2AN_1990__24_2_197_0/}
}
TY  - JOUR
AU  - Bonnans, Joseph Frédéric
TI  - Théorie de la pénalisation exacte
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1990
SP  - 197
EP  - 210
VL  - 24
IS  - 2
PB  - AFCET - Gauthier-Villars
PP  - Paris
UR  - http://archive.numdam.org/item/M2AN_1990__24_2_197_0/
LA  - fr
ID  - M2AN_1990__24_2_197_0
ER  - 
%0 Journal Article
%A Bonnans, Joseph Frédéric
%T Théorie de la pénalisation exacte
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1990
%P 197-210
%V 24
%N 2
%I AFCET - Gauthier-Villars
%C Paris
%U http://archive.numdam.org/item/M2AN_1990__24_2_197_0/
%G fr
%F M2AN_1990__24_2_197_0
Bonnans, Joseph Frédéric. Théorie de la pénalisation exacte. ESAIM: Modélisation mathématique et analyse numérique, Tome 24 (1990) no. 2, pp. 197-210. http://archive.numdam.org/item/M2AN_1990__24_2_197_0/

[1] M. S. Bazaraa,J. J. Goode, Sufficient conditions for a globally exact penalty function without convexity, Math. Programming Study 19, 1-15, 1982. | MR | Zbl

[2] A. Ben-Tal, Second order and related extremality conditions in nonlinear programming, J. Optim. Theory Appl. 31, 143-165, 1980. | MR | Zbl

[3] D. P. Bertsekas, Necessary and sufficient conditions for a penalty method to be exact, Math. Programming 9, 87-99, 1975. | MR | Zbl

[4] D. P. Bertsekas, Constrained optimization and Lagrange multiplier methods,Academic Press, New York, 1982. | MR | Zbl

[5] J. F. Bonnans, Asymptotic stability of the unit stepsize in exact penalty methods,SIAM J. Cont. Optimiz. 27, 631-641, 1989. | MR | Zbl

[6] J. F. Bonnans, Augmentability and exact penalisability in nonlinear programming under a weak second-order sufficiency condition, in rapport INRIA n° 548, 1986.

[7] J. F. Bonnans, D. Gabay, Une extension de la programmation quadratique successive, in « Lecture notes in control and information sciences n° 63 », A. Bensoussan et J. L. Lions ed., 16-31, Springer Verlag, Berlin, 1984. | MR | Zbl

[8] J. F. Bonnans,G. Launay, On the stability of sets defined by a finite number of equalities and inequalities, soumis au J. Opt. Th. Appl. | Zbl

[9] C. Charalambous, A lower bound for the controlling parameters of the exact penalty functions, Math. Programming 15, 278-290, 1978. | MR | Zbl

[10] F. H. Clarke, A new approach to Lagrange multipliers, Math. Oper. Res. 2, 165-174, 1976. | MR | Zbl

[11] S. P. Han, A global convergent method for nonlinear programming, J. Optim. Theory Appl. 22, 297-309, 1977. | MR | Zbl

[12] S. P. Han,O. L. Mangasarian, Exact penalty functions in nonlinear programming, Math. Programming 17, 251-269, 1979. | MR | Zbl

[13] M. R. Hestenes, Optimization theory : the finite dimensional case, J. Wiley & Sons, New York, 1975. | MR | Zbl

[14] A. D. Ioffe, Necessary and sufficient conditions for a local minimum 1 : A reduction theorem and first order conditions, SIAM J. Control Opt. 17, 245-250, 1979. | MR | Zbl

[15] G. P. Maccormick, Second order conditions for constrained minima, SIAM J. Applied Math. 15, 641-652, 1967. | MR | Zbl

[16] O. L. Mangasarian,M. Fromovitz, The Fritz-John necessary optimality condition in the presence of equality and inequality constraints, J. Math. Anal. Appl. 7, 37-47, 1967. | MR | Zbl

[17] J. P. Penot, A new constraint qualification condition, J. Optim. Th. Appl. 48,459-468, 1986. | MR | Zbl

[18] T. Pietrzykowski, An exact potential method for constrained maxima, SIAM J. Numer. Anal. 2, 299-304, 1969. | MR | Zbl

[19] B. Pschenichnyi,Y. Daniline, Méthodes numériques dans les problèmes d'extrémum, Mir, Moscou, 1965 (édition française : 1977). | Zbl

[20] S. M. Robinson, Stability theory for Systems of inequalities, part II : differentiable nonlinear Systems, SIAM J. Numerical Analysis 13, 497-513, 1976. | MR | Zbl

[21] R. T. Rockafellar, Convex Analysis, Princeton Univ. Press, Princeton, New Jersey, 1970. | Zbl

[22] R. T. Rockafellar, Augmented Lagrange multiplier functions and duality in nonconvex programming, SIAM J. Control 12, 268-285, 1974. | MR | Zbl

[23] E. Rosenberg, Exact penalty functions and stability in locally Lipschitz programming, Math. Programming 30, 340-356, 1984. | MR | Zbl