Traveling waves in a cylinder rolling on a flat surface
M2AN - Modélisation mathématique et analyse numérique, Volume 25 (1991) no. 1, pp. 129-149.
@article{M2AN_1991__25_1_129_0,
     author = {Ross, Dvora and Bercovier, Michel},
     title = {Traveling waves in a cylinder rolling on a flat surface},
     journal = {M2AN - Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {129--149},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {25},
     number = {1},
     year = {1991},
     zbl = {0737.73081},
     mrnumber = {1086844},
     language = {en},
     url = {http://archive.numdam.org/item/M2AN_1991__25_1_129_0/}
}
TY  - JOUR
AU  - Ross, Dvora
AU  - Bercovier, Michel
TI  - Traveling waves in a cylinder rolling on a flat surface
JO  - M2AN - Modélisation mathématique et analyse numérique
PY  - 1991
DA  - 1991///
SP  - 129
EP  - 149
VL  - 25
IS  - 1
PB  - AFCET - Gauthier-Villars
PP  - Paris
UR  - http://archive.numdam.org/item/M2AN_1991__25_1_129_0/
UR  - https://zbmath.org/?q=an%3A0737.73081
UR  - https://www.ams.org/mathscinet-getitem?mr=1086844
LA  - en
ID  - M2AN_1991__25_1_129_0
ER  - 
%0 Journal Article
%A Ross, Dvora
%A Bercovier, Michel
%T Traveling waves in a cylinder rolling on a flat surface
%J M2AN - Modélisation mathématique et analyse numérique
%D 1991
%P 129-149
%V 25
%N 1
%I AFCET - Gauthier-Villars
%C Paris
%G en
%F M2AN_1991__25_1_129_0
Ross, Dvora; Bercovier, Michel. Traveling waves in a cylinder rolling on a flat surface. M2AN - Modélisation mathématique et analyse numérique, Volume 25 (1991) no. 1, pp. 129-149. http://archive.numdam.org/item/M2AN_1991__25_1_129_0/

[1] F. Brezzi, W. W. Hager, P. A. Raviart, Error Estimates for the Finite Element Solution of Variational Inequalities. Numer. Math, 28, 431-443 (1977). | MR | Zbl

[2] J. Céa, Optimization : Théorie et Algorithmes. Dunod, Paris, 1971. | MR

[3] P. G. Cïarlet, The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, 1978. | MR | Zbl

[4] A. Friedman, Variational Principles and Free Boundary Problems. JohnWiley & Sons, 1982. | MR | Zbl

[5] R. Glowinski, J. L. Lions, R. Trémolière, Numerical Analysis of Variational Inequalities. North Holland Publishing Company, 1981. | MR | Zbl

[6] R. Glowinski, Numerical Methods for Non-Linear Variational Problems. IRIA, Rocquencourt, 1979.

[7] J. J. Kalker, Survey of Wheel-Rail Rolling Contact Theory. Vehicie System Dynamics 5, 317-358 (1979).

[8] D. Klnderlehrer, G. Stampacchia, An Introduction to Variational Inequalities and their Applications. Academie Press, New York, 1980. | MR | Zbl

[9] L. D. Landau, E. M. Lifshitz, Theory of Elasticity. Pergamon Press, London, 1959. | MR

[10] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites nonlinéaires. Dunod Gauthier-Villars, Paris, 1969. | MR | Zbl

[11] J. L. Lions, E. Magenes, Problèmes aux limites non homogènes; Vol. 1, Dunod, Paris, 1968. | Zbl

[12] J. T. Oden, T. L. Lin, On The General Rolling Contact Problem for Finite Deformations of a Viscoelastic Cylinder. Comput. Math. Appl. Mech. Engrg. 57, 297-367 (1986). | MR | Zbl

[13] J. Padovan, S. Tovichakchaikul, I. Zeid, Finite Element Analysis of Steadily Moving Contact Fields. Computers & Structures 18, 191-200 (1984). | Zbl

[14] G. Strang, G. Fix, An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs, New Jersey, 1973. | MR | Zbl