Upwind computation of steady planar flames with complex chemistry
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 25 (1991) no. 1, p. 67-91
@article{M2AN_1991__25_1_67_0,
     author = {Ghilani, M. and Larrouturou, B.},
     title = {Upwind computation of steady planar flames with complex chemistry},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {25},
     number = {1},
     year = {1991},
     pages = {67-91},
     zbl = {0717.65109},
     mrnumber = {1086841},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1991__25_1_67_0}
}
Ghilani, M.; Larrouturou, B. Upwind computation of steady planar flames with complex chemistry. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 25 (1991) no. 1, pp. 67-91. https://www.numdam.org/item/M2AN_1991__25_1_67_0/

[1] A. K. Aziz ed, The mathematical foundations of the finite-element method withapplications to partial differential equations, Academic Press, NewYork (1972) | MR 347104 | Zbl 0259.00014

[2] P. G. Clarlet, The finite-element method for elliptic problems, Studies in Math and Appl, North-Holland, New York (1978) | MR 520174 | Zbl 0383.65058

[3] P. Clavin, Dynamic behavior of premixed flame fronts in laminar and turbulent flows, Prog Energ Comb Sci, 11, pp 1-59 (1985)

[4] J. Donea, Recent advances in computational methods for steady and transient transport problems, Nuclear Eng Design, 80, pp 141-162 (1984)

[5] M. Ghilani, Simulation numérique de flammes planes stationnaires avec chimiecomplexe, Thesis, Université Paris-Sud (1987)

[6] D. F. Griffiths & J. Lorenz, An analysis of the Petrov-Galerkin finite-element method, Comp Meth Appl Mech Eng, 14, pp 39-64 (1978) | MR 502036 | Zbl 0384.76065

[7] T. J. R. Hughes, A simple scheme for developing upwindfïnite éléments, Int. J. Num. Meth. Eng., 12, pp. 1359-1365 (1978). | Zbl 0393.65044

[8] B. Larrouturou, The equations of one-dimensional unsteady flame propagation : existence and uniquenes, SI AM J. Math. Anal., 19 (1), pp. 32-59 (1988). | MR 924543 | Zbl 0662.35090

[9] B. Larrouturou, Introduction to combustion modelling, Springer Series in Computational Physics, to appear.

[10] N. Peters & J. Warnatz eds, Numerical methods in laminar flame propagation, Notes in Numerical Fluid Mechanics, 6, Vieweg, Braunschweig (1982). | MR 736841 | Zbl 0536.00017

[11] R. D. Rjchtmyer & K. W. Morton, Difference methods for initial value problems, Wiley, New York (1967). | Zbl 0155.47502

[12] M. Sermange, Mathematical and numerical aspects of one-dimensional laminar flame simulation, Appl. Math. Opt., 14 (2), pp. 131-154 (1986). | MR 863336 | Zbl 0654.65085

[13] M. D. Smooke, Solution of burner stabilized premixed laminar flames by boundary values methods, J. Comp. Phys., 48, pp. 72-105 (1982). | Zbl 0492.65065

[14] M. D. Smooke, J. A. Miller & R. J. Kee, Determination of adiabatic flames speeds by boundary value methods, Comb. Sci. Tech., 34, pp. 79-90 (1983).

[15] R. F. Warming & F. Hyett, The modified equation approach to the stabilityand accuracy analysis of finite-difference methods, J. Comp. Phys., 14 (2), p.159 (1974). | MR 339526 | Zbl 0291.65023

[16] F. A. Williams, Combustion theory, second édition, Benjamin Cummings, Menlo Park (1985).