A triangular mixed finite element method for the stationary semiconductor device equations
ESAIM: Modélisation mathématique et analyse numérique, Tome 25 (1991) no. 4, pp. 441-463.
@article{M2AN_1991__25_4_441_0,
     author = {Miller, J. J. H. and Wang, S.},
     title = {A triangular mixed finite element method for the stationary semiconductor device equations},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {441--463},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {25},
     number = {4},
     year = {1991},
     mrnumber = {1108585},
     zbl = {0732.65114},
     language = {en},
     url = {http://archive.numdam.org/item/M2AN_1991__25_4_441_0/}
}
TY  - JOUR
AU  - Miller, J. J. H.
AU  - Wang, S.
TI  - A triangular mixed finite element method for the stationary semiconductor device equations
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1991
SP  - 441
EP  - 463
VL  - 25
IS  - 4
PB  - AFCET - Gauthier-Villars
PP  - Paris
UR  - http://archive.numdam.org/item/M2AN_1991__25_4_441_0/
LA  - en
ID  - M2AN_1991__25_4_441_0
ER  - 
%0 Journal Article
%A Miller, J. J. H.
%A Wang, S.
%T A triangular mixed finite element method for the stationary semiconductor device equations
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1991
%P 441-463
%V 25
%N 4
%I AFCET - Gauthier-Villars
%C Paris
%U http://archive.numdam.org/item/M2AN_1991__25_4_441_0/
%G en
%F M2AN_1991__25_4_441_0
Miller, J. J. H.; Wang, S. A triangular mixed finite element method for the stationary semiconductor device equations. ESAIM: Modélisation mathématique et analyse numérique, Tome 25 (1991) no. 4, pp. 441-463. http://archive.numdam.org/item/M2AN_1991__25_4_441_0/

[1] R. A. Adams, Sobolev Spaces, Academie Press, New York (1975). | MR | Zbl

[2] I. Babuška, A. K. Aziz, Survey Lectures on the Mathematical Foundations of the Finite Element Method from The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Academic Press, New York (1972). | MR | Zbl

[3] I. Babuška, J. E. Osborn, Generalized Finite Element Methods: Their Performance and Their Relation to Mixed Methods, SIAM J. Numer. Anal., 20, No. 3 (1983) 510-536. | MR | Zbl

[4] R. E. Bank, D. J. Rose, Some Error Estimates fot the Box Method, SIAM J. Numer. Anal., 24, No. 4 (1987) 777-787. | MR | Zbl

[5] F. Brezzi, P. Marini, P. Pietra, Méthodes d'éléments finis et schema de Scharfetter-Gummel, C. R. Acad. Sci. Paris, 305, Seriel (1987) 599-604. | MR | Zbl

[6] F. Brezzi, P. Marini, P. Pietra, Two-Dimensional Exponential Fitting and Applications to Semiconductor Device Equations, SIAM J. Numer. Anal. 26 (1989) 1342-1355. | MR | Zbl

[7] F. Brezzi, L. D. Marini, P. Pietra Numerical Solution of Semiconductor Devices, Comp. Meth. Appl. Mech. Engin, 75 (1989) 493-514. | MR | Zbl

[8] E. Buturla, P. Cottrell, B. M. Grossman, K. A. Salsburg, Finite-Element Analysis of Semiconductor Devices The FIELDAY Program, IBM J. Res. Develop., 25, No. 4 (1981) 218-231.

[9] P. G. Ciarlet, P. A. Raviart, General Lagrange and Hermite Interpolation in Rn with Applications to Finite Element Methods, Arch. Rat. Mech. Anal., 46 (1972) 177-199. | MR | Zbl

[10] B. Delaunay, Sur la sphere vide, Izv. Akad. Nauk. SSSR, Math and Nat. Sci. Div., No. 6 (1934) 793-800 | Zbl

[11] G. L. Dirichlet, Uber die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen, J. Reine Angew. Math., 40, No. 3 (1850) 209-227. | Zbl

[12] V. Girault, P. A. Raviart, Finite Element Approximation of the Navier-Stokes Equations, Lect. Notes in Math., No. 749, Springer-Verlag (1979). | MR | Zbl

[13] H. K. Gummel, A Self-Consistent Iterative Scheme for One-Dimensional Steady State Transistor Calculation, IEEE Trans. Elec. Dev., ED-11 (1964) 455-465.

[14] B. Heinrich, Finite difference methods on irregular networks, Birkhauser Verlag, Basel-Boston-Stuttgart (1987). | MR | Zbl

[15] T Ikeda, Maximum Principle in Finite Element Models for Convection-Diffusion Phenomena, North-Holland (1983) | Zbl

[16] R. H. Li, Generalized Difference Methods for a Nonlinear Dirichlet Problem, SIAM J. Numer. Anal. Vol. 24, No. 1 (1987) 77-88 | MR | Zbl

[17] R. H. Macneal, An Asymmetrical Finite Difference Network, Quart. Appl. Math., 11 (1953) 295-310. | MR | Zbl

[18] P. A. Markowich, M. Zlámal, Inverse-Average-Type Finite Element Discretisations of Self adjoint Second-Order Elliptic Problems, Math. Comput., 51, No. 184 (1988) 431-449. | MR | Zbl

[19] B. J. Mccartin, Discretization of the Semiconductor Device Equations from New Problems and New Solutions for Device and Process Modelling, ed. J. J. H. Miller, Boole Press, Dublin (1985).

[20] J. J. H. Miller, S. Wang, C. H. Wu, A Mixed Finite Element Method for the Stationary Semiconductor Continuity Equations, Engin. Comput., 5, No. 4 (1988) 285-288. | MR

[21] M. S. Mock, Analysis of a Discretization Algorithm for Stationary Continuity Equations in Semiconductor Device Models, COMPEL, Vol. 2, No. 4 (1983) 117-139. | Zbl

[22] J. T. Oden, J. K. Lee, Theory of Mixed and Hybrid Finite-Element Approximations in Linear Elasticity from IUTAM/IUM Symp. Applications of Methods of Functional Analysis to Problems of Mechanics, Lect. Notes in Math. No. 503, Springer-Verlag (1976). | MR | Zbl

[23] J. T. Oden, J. N. Reddy, An Introduction to the Mathematical Theory of Finite Elements, John Wiley & Sons, New York (1976). | MR | Zbl

[24] W. V. Van Roosbroeck, Theory of Flow of Electrons and Holes in Germanium and Other Semiconductors, Bell Syst. Tech. J., 29 (1950) 560-607

[25] R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, New Jersey (1962). | MR | Zbl