Modeling contours of trivariate data
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 26 (1992) no. 1, p. 51-75
@article{M2AN_1992__26_1_51_0,
     author = {Hamann, B.},
     title = {Modeling contours of trivariate data},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {26},
     number = {1},
     year = {1992},
     pages = {51-75},
     zbl = {0748.65015},
     mrnumber = {1155000},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1992__26_1_51_0}
}
Hamann, B. Modeling contours of trivariate data. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 26 (1992) no. 1, pp. 51-75. http://www.numdam.org/item/M2AN_1992__26_1_51_0/

[1] P. Alfeld (1989), Scattered Data Interpolation in Three or More Variables, Mathematical Methods in Computer Aided Geometrie Design, T. Lyche, L. Schumaker (eds.), Academic Press, 1-33. | MR 1022695 | Zbl 0682.41003

[2] A. A. Ball (1974), Consurf I, Comput. Aided Design 6, 243-249.

[3] A. A. Ball (1975), Consurf II, Comput. Aided Design 7, 237-242.

[4] A. A. Ball (1977), Consurf III, Comput. Aided Design 9, 9-12.

[5] R. E. Barnhill, G. Birkhoff, W. J. Gordon (1973), Smooth Interpolation in Triangles, J. Approx. Theory, 8, 114-128. | MR 368382 | Zbl 0271.41002

[6] R. E. Barnhill (1985), Surfaces in Computer Aided Geometric Design : A Survey with New Results, Comput. Aided Geom. Design, Vol.2, N° 1-3, 1-17. | MR 828527 | Zbl 0597.65001

[7] B. K. Bloomquist (1990), Contouring Trivariate Surfaces, Masters Thesis, Arizona State University, Department of Computer Science.

[8] W. Boehm, G. Farin, J. Kahmann (1984), A Survey of Curve and Surface Methods in CAGD, Comput. Aided Geom. Design, Vol. 1, 1-60. | Zbl 0604.65005

[9] D. H. Ballard, C. M. Brown (1982), Computer Vision, Prentice Hall.

[10] C. R. Calladine (1986), Gaussian Curvature and Shell Structures, Mathematics of Surfaces, J. Gregory (ed.), Clarendon Press, Oxford, 179-196.

[11] B. K. Choi, Y. Shin, Y. I. Yoon, J. W. Lee (1988), Triangulation of Scattered Data in 3D Space, Comput. Aided Design, Vol.20, N°5, 239-248. | Zbl 0681.65002

[12] W. Dahmen (1989), Smooth Piecewise Quadric Surfaces, Mathematical Methods in Computer Aided Geometric Design, T. Lyche, L. L. Schumaker (eds.), Academic Press, 181-193. | MR 1022707 | Zbl 0682.41001

[13] R. A. Drebin, L. Carpenter, P. Hanrahan (1988), Volume Rendering, Comput. Graphics, Vol.22, N 4, 65-74.

[14] M. J. Dürst (1988), Letters: Additional Reference to « Marching Cubes », Comput. Graphics, Vol. 22, N° 2.

[15] G. Farin (1983), Smooth Interpolation to Scattered 3D Data, Surfaces in CAGD, R. E. Barnhill, W. Boehm (eds.), 43-63. | MR 709288

[16] G. Farin (1986), Triangular Bernstein-Bézier Patches, Comput. Aided Geom. Design, Vol.3, N° 2, 83-127. | MR 867116

[17] G. Farin (1988), Curves and Surfaces for Computer Aided Geometric Design, Academic Press, Inc. | MR 974109 | Zbl 0694.68004

[18] I. Faux, M. Pratt (1979), Computational Geometry for Design and Manufacture, Ellis Horwood. | MR 524724 | Zbl 0395.51001

[19] T. A. Foley, D. A. Lane, G. M. Nielson (1990), Towards Animating Ray-Traced Volume Visualization, to appear in Visualization and Computer Animation Journal.

[20] R. Franke, J. M. Nielson (1990), Scattered Data Interpolation and Applications : A Tutorial and Survey, Geometric Modelling : Methods and Their Applications, H. Hagen, D. Roller (eds.), Springer.

[21] K. S. Fu, R. C. Gonzalez, C. S. G. Lee (1987), Robotics, McGraw-Hill.

[22] H. Fuchs, M. Levoy, S. M. Pizer (1989), Interactive Visualization of 3D Medical Data, Computer, Vol 22, N° 8, 46-51.

[23] H. Hagen, H. Pottmann (1989), Curvature Continuous Triangular Interpolants, Mathematical Methods in Computer Aided Geometric Design, T Lyche, L L Schumaker (eds.), Academic Press, 373-384. | MR 1022719 | Zbl 0675.41002

[24] B. Hamann (1990), Visualisierungstechniken zur Darstellung dreidimensionaler Datenmengen (Visualization Techniques for the Representation of Three-Drmensional Data Sets, in German), in CAD Computergraphik, Vol. 14, N° 2, Austria, 129-139.

[25] B. Hamann, G. Farin, G. M. Nielson (1990), A Parametric Triangular Patch Based on Generalized Conics, in : Farin, G., ed., NURBS for Curve and Surface Design, SIAM, Philadelphia, 75-85. | MR 1133465 | Zbl 0767.68102

[26] J. Hoschek, D. Lasser (1989), Grundlagen der Geometrischen Datenverarbeitung (German), Teubner, Stuttgart (F.R.G.). | MR 1055828 | Zbl 0682.68002

[27] J. Kajiya, B. Von Herzen (1984), Ray Tracing Volume Densities, Comput Graphics, Vol. 18, N° 3, 165-173.

[28] C. L. Lawson (1977), Software for C1 Surface Interpolation, Mathematical Software III, J. R. Rice (ed.), Academic Press, 161-194. | MR 474682 | Zbl 0407.68033

[29] A. J. Y. Le Mehaute, Y. Lafranche (1989), A Knot Removal Strategy for Scattered Data in R2, Mathematical Methods in Computer Aided Geometric Design, T Lyche, L L Schumaker (eds.), Academic Press, 419-426. | MR 1022694 | Zbl 0675.41017

[30] M. Levoy (1988), Display of Surfaces from Volume Data, IEEE Comput. Graphics Appl., Vol. 8, N° 3, 29-37.

[31] M. Levoy (1990), Volume Rendering, IEEE Comput Graphics Appl., Vol. 10, N° 2, 33-40.

[32] M. B. Long, K. Lyons, J. K. Lam (1989), Acquisition and Representation of 2D and 3D Data from Turbulent Flows and Flames, Computer, Vol. 22, N° 8, 39-45.

[33] W. E. Lorensen, H. E. Cline (1987), Marching Cubes : A High Resolution 3D Surface Construction Algorithm, Comput. Graphics, Vol. 21, N° 4, 163-169.

[34] D. R. Ney, E. K. Fishman, D. Magid, R. A. Drebin (1990), Volumetric Rendering, IEEE Comput. Graphics Appl., Vol. 10, N° 2, 24-32.

[35] G. M. Nielson (1987), A Transfinite, Visually Continuous, Tnangular Interpolant, Geometric Modelling : Algorithms and New Trends, G Farm (ed.), SIAM Publications, Philadelphia, 235-246. | MR 936457

[36] G. M. Nielson, B. Hamann, (1990), Techniques for the Interactive Visualization of Volumetric Data, Proceedings of the IEEE Conference Visualization '90, IEEE Computer Society Press, 45-50.

[37] C. S. Petersen, B. R. Piper, A. J. Worsey, (1987), Adaptive Contouring of a Trivariate Interpolant, Geometric Modeling : Algorithms and New Trends, G Farin (ed.), SIAM Publications, Philadelphia, 385-395. | MR 936467

[38] B. R. Piper (1987), Visually Smooth Interpolation with Triangular Bézier Patches, Geometric Modeling : Algorithms and New Trends, G. Farin (ed.), SIAM Publications, Philadelphia 221-233. | MR 936456

[39] H. Pottmann (1989), Scattered Data Interpolation Based upon Generalized Minimum Norm Networks, submitted to Constructive Approximation Theory. | Zbl 0725.65008

[40] W. Rath (1988), Computergestützte Darstellungen von Hyperflächen des R4 und deren Anwendungsmöglichkeiten im CAGD (German), CAD Computergraphik, Vol. 11, N° 4, 111-117.

[41] P. Sabella (1988), A Rendering Algorithm for Visualizing 3D Scalar Fields, Comput. Graphics, Vol. 22, N° 4, 51-55.

[42] T. W. Sederberg (1985), Piecewise Algebraic Surface Patches, Comput. Aided Geom. Design, Vol. 2, N° 1-3, 53-59. | MR 828532 | Zbl 0578.65147

[43] S. E. Stead (1984), Estimation of Gradients from Scattered Data, Rocky Mountain J. Math., Vol. 14, N° 1, 265-279. | MR 736178 | Zbl 0558.65009

[44] U. Tiede, K. H. Höhne, M. Bomans, A. Pommert, M. Riemer, G. Wiebecke (1990), Surface Rendering, IEEE Comput. Graphics Appl., Vol. 10, N° 2, 41-53.

[45] A. Worsey, G. Farin (1987), An N-Dimensional Clough-Tocher Element, Constr. Approx., Vol. 3, 99-110. | MR 889547 | Zbl 0631.41003

[46] S. W. Zucker, R. A. Hummel (1981), A Three-Dimensional Edge Operator, IEEE Trans. Pattern Recogn. Mach. Intelligence, Vol. PAMI-3, N° 3, 324-331. | Zbl 0456.68122