A parallel splitting-up method for partial differential equations and its applications to Navier-Stokes equations
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 26 (1992) no. 6, p. 673-708
@article{M2AN_1992__26_6_673_0,
     author = {Lu, T. and Neittaanmaki, P. and Tai, X.-C.},
     title = {A parallel splitting-up method for partial differential equations and its applications to Navier-Stokes equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {26},
     number = {6},
     year = {1992},
     pages = {673-708},
     zbl = {0756.65129},
     mrnumber = {1183413},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1992__26_6_673_0}
}
Lu, T.; Neittaanmaki, P.; Tai, X.-C. A parallel splitting-up method for partial differential equations and its applications to Navier-Stokes equations. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 26 (1992) no. 6, pp. 673-708. http://www.numdam.org/item/M2AN_1992__26_6_673_0/

[1] A. J. Chorin, Numerical solution of Navier-Stokes equations Math. Comp., 22 (1968), 745-762. | MR 242392 | Zbl 0198.50103

[2]C. Cuvelier, A. Segal, A. A. Van Steenhoven, Finite element methods and Navier-Stokes equations, D. Reidel Publishing Company, 1986. | MR 850259 | Zbl 0649.65059

[3] J. Douglas and H. Rachford, On the numencal solution of the heat conduction problem in two and three space variables, Trans. Amer. Math. Soc., 82 2 (1956), 421-439. | MR 84194 | Zbl 0070.35401

[4] G. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equations, Theory and algorithms, Springer-Verlag, Berlin, 1986. | MR 851383 | MR 540128 | Zbl 0585.65077

[5] A. R. Gourlay, Splitting-up methods for time dependent partial differential equations, in The state of the art in numerical analysis (proc. Conf. Univ. York, Heslington, 1976), Academic Press, London, 1977, pp. 757-796. | MR 451759

[6] J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier Stokes problem : I. Regularity of the solution and second-order error estimates for the spatial discretization, SIAM J. Numer. Anal., 19 (1982), 275-311. | MR 650052 | Zbl 0487.76035

[7] M. Křižek and P. Neittaanmäki, Finite element approximation to variational problems with applications, Pitman Monographs in Pure and Applied Mathematics 50, Longman, 1990. | MR 1066462 | Zbl 0708.65106

[8] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Gordon and Breach, New York, Second Edition, 1969. | MR 254401 | Zbl 0184.52603

[9] O. A. Ladyzhenskaya and V. I. Rivkind, On the alternating method for the computation of a viscous incompressible fluid flow in cylindrical coordinates, Izv. Akad. Nauk, 35 (1971), 251-268. | MR 284076 | Zbl 0222.76024

[10] J. L. Lions and R. Temam, Éclatement et décentralisation en calcul des variations, in « Proc. of Symposium on Optimization », Lecture Notes in Mathematics, Vol. 132, Springer Verlag, 1970, pp. 196-217. | MR 467468 | Zbl 0223.49033

[11] T. Lu, P. Neittaanmäki and X.-C. Tai, A parallel spliting-up method and its application to Naver-Stokes equations, Appl. Math. Lett., 4 (1989). 25-29. | MR 1095644 | Zbl 0718.65066

[12] G. I. Marchuk, Methods of numerical mathematics, Springer-Verlag, 1982. | MR 661258 | Zbl 0485.65003

[13] D. W. Peaceman and H. H. Rachford, The numerical solution of parabolic and elliptic differential equations, SIAM, 3 (1955), 28-42. | MR 71874 | Zbl 0067.35801

[14] J. Shen, On error estimates of projection methods for Navier-Stokes equations : First order schemes, To appear in SIAM J. Numer. Anal. | MR 1149084 | Zbl 0741.76051

[15] X. C. Tai and P. Neittaanmäki, A parallel finite element splitting up method for parabolic problems, Numerical methods for partial differential equations, 7 (1991), 209-225. | MR 1122113 | Zbl 0747.65084

[16] R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode de pas fractionnaires (I), Arch. Rational Mech. Anal., 32 (1969), 135-153. | MR 237973 | Zbl 0195.46001

[17] R. Temam, Numerical analysis, D. Reidel Publishing Company, Dordrecht, North-Holland, 1973. | MR 347099 | Zbl 0261.65001

[18] R. Temam Navier-Stokes equations, North-Holland, 1977. | MR 609732 | Zbl 0383.35057

[19] N. N. Yanenko, The method of fractional steps for solving multi-dimensional problems of mathematical physics, Novosibirsk, Nauka, 1967. | Zbl 0209.47103

[20] L. Ying, Viscosity splitting method for three dimensional Navier-Stokes equations, Acta Math. Sinica New Series, No. 3, 4 (1988), 210-226. | MR 965569 | Zbl 0673.35085