Critères d’injectivité et de surjectivité pour certaines applications de n dans lui-même ; application à la mécanique du contact
ESAIM: Modélisation mathématique et analyse numérique, Tome 27 (1993) no. 2, pp. 203-222.
@article{M2AN_1993__27_2_203_0,
     author = {Alart, Pierre},
     title = {Crit\`eres d{\textquoteright}injectivit\'e et de surjectivit\'e pour certaines applications de $\mathbb {R}^n$ dans lui-m\^eme ; application \`a la m\'ecanique du contact},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {203--222},
     publisher = {AFCET - Gauthier-Villars},
     address = {Paris},
     volume = {27},
     number = {2},
     year = {1993},
     mrnumber = {1211616},
     zbl = {0767.73064},
     language = {fr},
     url = {http://archive.numdam.org/item/M2AN_1993__27_2_203_0/}
}
TY  - JOUR
AU  - Alart, Pierre
TI  - Critères d’injectivité et de surjectivité pour certaines applications de $\mathbb {R}^n$ dans lui-même ; application à la mécanique du contact
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1993
SP  - 203
EP  - 222
VL  - 27
IS  - 2
PB  - AFCET - Gauthier-Villars
PP  - Paris
UR  - http://archive.numdam.org/item/M2AN_1993__27_2_203_0/
LA  - fr
ID  - M2AN_1993__27_2_203_0
ER  - 
%0 Journal Article
%A Alart, Pierre
%T Critères d’injectivité et de surjectivité pour certaines applications de $\mathbb {R}^n$ dans lui-même ; application à la mécanique du contact
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1993
%P 203-222
%V 27
%N 2
%I AFCET - Gauthier-Villars
%C Paris
%U http://archive.numdam.org/item/M2AN_1993__27_2_203_0/
%G fr
%F M2AN_1993__27_2_203_0
Alart, Pierre. Critères d’injectivité et de surjectivité pour certaines applications de $\mathbb {R}^n$ dans lui-même ; application à la mécanique du contact. ESAIM: Modélisation mathématique et analyse numérique, Tome 27 (1993) no. 2, pp. 203-222. http://archive.numdam.org/item/M2AN_1993__27_2_203_0/

[1] G. Duvaut, 1982, Loi de frottement non locale, J. Méc. Th. et Appl., numéro spécial, 73-78. | MR | Zbl

[2] J. Necas, J. Jarusek, J. Haslinger, 1980, On the Solution of the Variational Inequatlity to the Signorini Problem with Small Friction, Bolletino U.M.I, (5) 17. B, 796-811. | MR | Zbl

[3] A. Klarbring, 1985, Contact Problems in Linear Elasticity, Ph. D. Thesis n° 133, University of Linkoping.

[4] P. Alart, A. Curnier, 1991, A Mixed Formulation for Frictional Contact Problems Prone to Newton like Solution Methods, Computer Methods in Applied Mechanics and Engineering, 92, (3), 353-375. | MR | Zbl

[5] I. Capuzzo Dolcetta, U. Mosco, 1979, Implicit Complementarity Problems and Quasi-Vanational Inequalities, in Gianessi, Cottle, Lions eds, Variiational Inequalities and Complementarity Problems, J. Wiley. | Zbl

[6] V. Janovsky, 1981, Catastrophic Features of Coulomb Friction Model, Proc. Mathematics of Elements and Applications, Brunel University. | Zbl

[7] A. Curnier, P. Alart, 1988, A Generalized Newton Method for Contact Problem with Friction, J. Méc. Th. Et Appl., numéro spécial : Numerical Methods in Mechanics of Contact Involving Friction, 67-82. | MR | Zbl

[8] F. H. Clarke, 1983, Optimization and Nonsmooth Analysis, Wiley. | MR | Zbl

[9] T. Parthasarathy, 1983, On Global Univalence Theorems, Lecture Notes, 977, Springer Verlag. | MR | Zbl

[10] S. Banach, S. Mazur, 1934, Uber mehrdeutige stetige abbildungen, Studia Math. 5, 174-178. | EuDML | JFM

[11] M. Kojima, R. Saigal, 1979, A Study of PC1 Homeomorphisms on Subdivided Polyhedrons, SIAM J. Math. Anal., 10, (6), 1299-1312. | MR

[12] J. Ortega, W. Rheinbolt, 1970, Iterative Solutions of Non Linear Equations on Several Variables, Academic Press, New York. | Zbl

[13] M. Kojima, R. Saigal, 1980, On the Relationship between Conditions that Insure a PL Mapping is a Homeomorphism, Mathematics of Operations Research, 5, (1). | MR | Zbl

[14] R. S. Palais, 1959, Natural Operations on Differential Forms, Trans. Amer. Math. Soc., 92, 125-141. | MR | Zbl

[15] C. Licht, E. Pratt, M. Raous, 1990, Remarks on a Numerical Method for Unilateral Contact Including Friction, in «Unilateral Problems in Structural Analysis», Capri, Juin 89, ed. CISM. | MR | Zbl

[16] C. Mellouki-Filali, 1988, Problème des milieux continus en contact avec frottement ; stabilité et convergence des algorithmes numériques, thèse de 3e cycle, Université Montpellier II.