@article{M2AN_1994__28_3_243_0, author = {Goubet, O.}, title = {Separation of variables in the {Stokes} problem application to its finite element multiscale approximation}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {243--266}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {28}, number = {3}, year = {1994}, mrnumber = {1275344}, zbl = {0819.76044}, language = {en}, url = {http://archive.numdam.org/item/M2AN_1994__28_3_243_0/} }
TY - JOUR AU - Goubet, O. TI - Separation of variables in the Stokes problem application to its finite element multiscale approximation JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1994 SP - 243 EP - 266 VL - 28 IS - 3 PB - AFCET - Gauthier-Villars PP - Paris UR - http://archive.numdam.org/item/M2AN_1994__28_3_243_0/ LA - en ID - M2AN_1994__28_3_243_0 ER -
%0 Journal Article %A Goubet, O. %T Separation of variables in the Stokes problem application to its finite element multiscale approximation %J ESAIM: Modélisation mathématique et analyse numérique %D 1994 %P 243-266 %V 28 %N 3 %I AFCET - Gauthier-Villars %C Paris %U http://archive.numdam.org/item/M2AN_1994__28_3_243_0/ %G en %F M2AN_1994__28_3_243_0
Goubet, O. Separation of variables in the Stokes problem application to its finite element multiscale approximation. ESAIM: Modélisation mathématique et analyse numérique, Tome 28 (1994) no. 3, pp. 243-266. http://archive.numdam.org/item/M2AN_1994__28_3_243_0/
[1] Preconditioning and two-level multigrid methods of arbitrary degree of approximation, Math. Comput., 40, 219-242. | MR | Zbl
and , 1983,[2] Error estimates for finite element solutions of the Stokes problem in the primitive variables, Numer. Math., 33, 211-224. | MR | Zbl
and , 1979,[3] Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, vol.15, Springer-Verlag, New York. | MR | Zbl
and , 1991,[4] Parallel multilevel preconditioners, Math. Comput., 55,1-22. | MR | Zbl
, and , 1990,[5] The incremental unknowns method, I, II, Applied Mathematics Letters. | MR | Zbl
and , 1991,[6] The Finite Element Method for Elliptic Problems, North-Holland. | Zbl
, 1977,[7] On the construction of families of approximate inertial manifolds, J. Diff. Equ., to appear. | MR | Zbl
and ,[8] Convex Analysis and Variational Problems, North-Holland, Amsterdam. | MR | Zbl
and , 1976,[9] Approximate inertial manifolds for the sine-Gordon equation, J. Diff. and Integ. Equ., 4, 1169-1194. | MR | Zbl
, 1991,[10] Modelling of the interaction of small and large eddies in two-dimensional turbulent flows, Math, Model. Numer. Anal, 22, 93-114. | Numdam | MR | Zbl
, and , 1988,[11] Inertial manifolds for nonlinear evolutionary equations, J. Diff. Equ., 73,309-353. | MR | Zbl
, and , 1988,[12] Finite Element Methods for Navier-Stokes Equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, New York. | MR | Zbl
and , 1986,[13] Construction of approximate inertial manifolds using wavelets, SIAM J. Math. Anal., 23,1455-1481. | MR | Zbl
, 1992,[14] Separation des variables dans le probleme de Stokes. Application à son approximation multiéchelles éléments finis, C. R. Acad. Sci.Paris, 315, Série I, 1315-1318. | MR | Zbl
, 1992,[15] Boundary Value Problems in Non-smooth Domains, Univ.of Maryland, Départ, of Math., Lecture Notes n° 19.
, 1980,[16] Nonlinear Galerkin methods, SIAM J. Numer. Anal., 26, 1139-1157. | MR | Zbl
and , 1989,[17] Nonlinear Galerkin methods, the finite elements case, Numer. Math., 57,1-22. | MR | Zbl
and , 1990,[18] Thesis, Université de Paris-Sud.
, 1992,[19] Localization and approximation of attractors for the Ginzburg-Landau equation, J. Dynamic and Diff. Equ., to appear. | MR | Zbl
and ,[20] Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Appl. Math. Sci., 68. | MR | Zbl
, 1988,[21] Attractors for the Navier-Stokes equations, localization and approximation, J. Fac. Sci. Tokyo, Sec. IA, 36, 629-647. | MR | Zbl
, 1989,[22] Inertial manifolds and multigrid methods, SIAM J. Math. Anal., 21, 154-178. | MR | Zbl
, 1990,[23] Navier-Stokes Equations, 3rd ed., North-Holland, Amsterdam. | MR | Zbl
, 1984,[24] Error estimates for a mixed finite element approximation of the Stokes equations, RAIRO Numer. Anal., 18, 175-182. | Numdam | MR | Zbl
, 1984,[25] On the multi-level spliting of finite element spaces, Numer. Math., 49, 379-412. | Zbl
, 1986,