@article{M2AN_1994__28_3_267_0, author = {Vila, J.-P.}, title = {Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation laws. {I.} {Explicite} monotone schemes}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {267--295}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {28}, number = {3}, year = {1994}, mrnumber = {1275345}, zbl = {0823.65087}, language = {en}, url = {http://archive.numdam.org/item/M2AN_1994__28_3_267_0/} }
TY - JOUR AU - Vila, J.-P. TI - Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation laws. I. Explicite monotone schemes JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1994 SP - 267 EP - 295 VL - 28 IS - 3 PB - AFCET - Gauthier-Villars PP - Paris UR - http://archive.numdam.org/item/M2AN_1994__28_3_267_0/ LA - en ID - M2AN_1994__28_3_267_0 ER -
%0 Journal Article %A Vila, J.-P. %T Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation laws. I. Explicite monotone schemes %J ESAIM: Modélisation mathématique et analyse numérique %D 1994 %P 267-295 %V 28 %N 3 %I AFCET - Gauthier-Villars %C Paris %U http://archive.numdam.org/item/M2AN_1994__28_3_267_0/ %G en %F M2AN_1994__28_3_267_0
Vila, J.-P. Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation laws. I. Explicite monotone schemes. ESAIM: Modélisation mathématique et analyse numérique, Volume 28 (1994) no. 3, pp. 267-295. http://archive.numdam.org/item/M2AN_1994__28_3_267_0/
[1] Numerical viscosity, entropy condition and convergence of finite volume scheme for general multidimensional conservation laws, Taormina, 1992. | MR | Zbl
, , ,[2] Numerical Viscosity and Convergence of Finite Volume Methods for Conservation Laws with Boundary Conditions, to appear SIAM Journal, on Num. Ana., 1994. | MR | Zbl
, , ,[3] Convergence of finite volume methods, Preprint, 1991.
, , , ,[4] Convergence of finite difference schemes for conservation laws in several space dimensions : the corrected antidiffusion flux approach, RI École polytechnique 210, 1990. | MR | Zbl
, ,[5] Convergence d'un schéma décentré amont pour une équation hyperbolique linéaire sur un maillage triangulaire, to appear M2AN. | Numdam | Zbl
, ,[6] Convergence of an upstream finite volume scheme for a non linear hyperbolic equation on a triangular mesh, Preprint, Université de Savoie, 1991. | MR | Zbl
, , ,[7] Monotone Difference Approximations for Scalar Conservation Laws, Math. of Comp., 1980, 34, 149, pp. 1-21. | MR | Zbl
, ,[8] On the continuity in BV (Ω) of the L2 projection into finite element spaces, Preprint 90-1, Army High performance comp. res. center Univ. Minnesota. | MR
,[9] Some relations beetween nonexpansive and order preserving mappings, Proc. A.M.S., 78, pp. 385-390, 1980. | MR | Zbl
, ,[10] Measure-valued solution to conservation laws, Arch. Rat. Mech. Anal., 1985, 88, pp. 223-270. | MR | Zbl
,[11] An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation, Math. of Comp., 1984, 47, pp. 285-312. | MR
, ,[12] Accuracy of some approximate methods for computing the weak solution of a first order quasi-linear equation, USSR Comp. Math. and Math. Phys., 1976, 16, pp. 105-119. | MR | Zbl
,[13] On monotone difference approximations for a first order quasilinear equation, Soviet Math. Dokl., 1976, v. 17, pp. 1203-1206. | MR | Zbl
, ,[14] First order quasilinear equations in several independent variables, Math. USSR Sbornik, 1970, 10, pp. 217-243. | MR | Zbl
,[15] Shock waves and entropy Contributions to non linear Functional analysis, ed. E. A. Zarantonello, Academic press, 1971. | MR | Zbl
,[16] Riemann solvers, the entropy condition and difference approximations, Siam. Jour. num. anal., 1984. | MR | Zbl
,[17] Convergence of a streamline diffusion finite element method for a conservation law with boundary conditions, RAIRO Model. Math. Anal. Numer., 1991, 25, pp. 749-783. | EuDML | Numdam | MR | Zbl
,[18] Numerical viscosity and the entropy condition, Math. of Comp., 1984, 43, pp. 369-381. | MR | Zbl
,