@article{M2AN_1994__28_6_699_0, author = {Morton, K. W. and Stynes, M.}, title = {An analysis of the cell vertex method}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {699--724}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {28}, number = {6}, year = {1994}, mrnumber = {1302420}, zbl = {0822.65078}, language = {en}, url = {http://archive.numdam.org/item/M2AN_1994__28_6_699_0/} }
TY - JOUR AU - Morton, K. W. AU - Stynes, M. TI - An analysis of the cell vertex method JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1994 SP - 699 EP - 724 VL - 28 IS - 6 PB - AFCET - Gauthier-Villars PP - Paris UR - http://archive.numdam.org/item/M2AN_1994__28_6_699_0/ LA - en ID - M2AN_1994__28_6_699_0 ER -
%0 Journal Article %A Morton, K. W. %A Stynes, M. %T An analysis of the cell vertex method %J ESAIM: Modélisation mathématique et analyse numérique %D 1994 %P 699-724 %V 28 %N 6 %I AFCET - Gauthier-Villars %C Paris %U http://archive.numdam.org/item/M2AN_1994__28_6_699_0/ %G en %F M2AN_1994__28_6_699_0
Morton, K. W.; Stynes, M. An analysis of the cell vertex method. ESAIM: Modélisation mathématique et analyse numérique, Tome 28 (1994) no. 6, pp. 699-724. http://archive.numdam.org/item/M2AN_1994__28_6_699_0/
[1] Approximate symmetrization and Petrov-Galerkin methods for diffusion-convection problems, Computer Methods in Applied Mechanics and Engineering, 45, 97-122. | MR | Zbl
and , 1984,[2] A numerical study of stiff two-point boundary problems, PhD thesis, Mathematisch Centrum, Amsterdam. | MR | Zbl
, 1977,[3] Analysis of some difference approximations for a singular perturbation problem without turning points, Mathematics of Computation, 32, 1025-1039. | MR | Zbl
and , 1978,[4] Cell vertex finite volume methods for the solution of the compressible Navier-Stokes equations, PhD thesis, Oxford University Computing Laboratory, 11 Keble Road, Oxford, OX1 3QD.
, 1991,[5] Finite volume solutions of convection-diffusion test problems, Mathematics of Computation, 60(201), 189-220. | MR | Zbl
and , 1992[6] Finite volume methods and their analysis, in J. R. Whiteman, editor, The Mathematics of Finite Elements and Applications VII MAFELAP 1990, Academic Press, 189-214. | MR | Zbl
, 1991,[7] Upwinded test functions for finite element and finite volume methods, in D. F. Griffiths and G. A. Watson, editors, Numerical analysis 1991 Proceedings of the 14th Dundee Conference, June 1991, number 260 in Pitman Research Notes in Mathematics Series, pp. 128-141, Longman Scientific and Technical. | MR | Zbl
, 1992,[8] Cell vertex methods for inviscid and viscous flows, Computers Fluids, 22(2/3), 91-102. | Zbl
, and , 1993,[9] Finite volume methods and their analysis, IMA Journal of Numerical Analysis, 11, 241-260. | MR | Zbl
and , 1991,[10] An analysis of a singularly perturbed two-point boundary value problem using only finite element techniques, Mathematics of Computation, 56, 663-676. | MR | Zbl
and , 1991,[11] The accuracy of finite volume methods on distorted partitions. In J. R. Whiteman, editor. The Proceedings of the Conference on The Mathematics of Finite Elements and Applications VII MAFELAP, pp. 253-260. Academic Press. | MR
, 1991,[12] The accuracy of cell vertex finite volume methods on quadrilateral meshes, Mathematics of Computation, 59(200), 359-382. | MR | Zbl
, 1992,