@article{M2AN_1994__28_6_725_0, author = {Liu, W. B. and Barrett, John W.}, title = {Quasi-norm error bounds for the finite element approximation of some degenerate quasilinear elliptic equations and variational inequalities}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {725--744}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {28}, number = {6}, year = {1994}, mrnumber = {1302421}, zbl = {0820.65073}, language = {en}, url = {http://archive.numdam.org/item/M2AN_1994__28_6_725_0/} }
TY - JOUR AU - Liu, W. B. AU - Barrett, John W. TI - Quasi-norm error bounds for the finite element approximation of some degenerate quasilinear elliptic equations and variational inequalities JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1994 SP - 725 EP - 744 VL - 28 IS - 6 PB - AFCET - Gauthier-Villars PP - Paris UR - http://archive.numdam.org/item/M2AN_1994__28_6_725_0/ LA - en ID - M2AN_1994__28_6_725_0 ER -
%0 Journal Article %A Liu, W. B. %A Barrett, John W. %T Quasi-norm error bounds for the finite element approximation of some degenerate quasilinear elliptic equations and variational inequalities %J ESAIM: Modélisation mathématique et analyse numérique %D 1994 %P 725-744 %V 28 %N 6 %I AFCET - Gauthier-Villars %C Paris %U http://archive.numdam.org/item/M2AN_1994__28_6_725_0/ %G en %F M2AN_1994__28_6_725_0
Liu, W. B.; Barrett, John W. Quasi-norm error bounds for the finite element approximation of some degenerate quasilinear elliptic equations and variational inequalities. ESAIM: Modélisation mathématique et analyse numérique, Tome 28 (1994) no. 6, pp. 725-744. http://archive.numdam.org/item/M2AN_1994__28_6_725_0/
[1] Some boundary-value problems for the equation ∇ (|∇φ|N ∇φ) = 0. Q. Jl Mech. Appl. Math., 37, 401-419. | MR | Zbl
, , 1984,[2] Finite element approximation of the p-Laplacian, Math. Comp., 61. 523-537. | MR | Zbl
, , 1993,[3] Finite element error analysis of a quasi-Newtoman flow obeying the Carreau or power law, Numer. Math., 64, 433-453. | MR | Zbl
, , 1993,[4] Finite element approximation of the parabolic p-Laplacian, SIAM, J. Numer. Anal., 31, 413-428. | MR | Zbl
, , 1994,[5] A regularity theory for a general class of quasilmear elliptic partial differential equations and obstacle problems, Arch. Rat. Mech. Anal., 114, 383-394. | MR | Zbl
, 1991,[6] Finite element error estimates for non-linear elliptic equations of monotone type, Numer. Math. 54, 373-393. | MR | Zbl
, 1989,[7] The Finite Element Methodfor Elliptic Problems, North. Holland, Amsterdam. | MR | Zbl
, 1978,[8] On finite element approximation in the L∞-norm of variational inequalities, Numer. Math., 47, 45-57. | MR | Zbl
, 1985,[9] Finite element methods for nonlinear elliptic Systems of second order, Math. Nachr., 94, 155-172. | MR | Zbl
, , 1980,[10] Error estimates for the approximation of a class of variational inequalities, Math. Comp., 28, 963-971. | MR | Zbl
, 1974,[11] Asymptotic L∞-error estimates for linear finite element approximations of quasilinear boundary problems, SIAM, J. Numer. Anal., 15, 419 431. | MR | Zbl
, , 1978,[12] Sur l'approximation par éléments finis d'ordre un, et la résolution, par pénalisation-dualite, d'une classe de problèmes de Dirichlet non linéaires, R.A.I.R.O. Analyse Numérique, 2, 41-64. | Numdam | MR | Zbl
, , 1975,[13] A remark on the regulanty of the solutions of the p-Laplacian and its applications to their finite element approximation, J. Math. Anal. Appl., 178, 470-487. | MR | Zbl
, , 1993,[14] A further remark on the regularity of the solutions of the p-Laplacian and its applications to their finite element approximation, Nonlinear Anal., 21, 379-387. | MR | Zbl
, , 1993,[15] Higher order regularity for the solutions of some quasilinear degenerate elliptic equations in the plane, SIAM, J. Math. Anal., 24, 1522-1536. | MR | Zbl
, , 1993,[16] Finite element approximation of some degenerate monotone quasilinear elliptic Systems, SIAM, J. Numer. Anal. (to appear). | MR | Zbl
, ,[17]On the approximate solution of nonlinear variation inequalities, Numer. Math., 29, 451-462. | MR | Zbl
, 1978,[18] Pointwise accuracy of a finite element method for nonlinear variational inequalities, Numer. Math., 54, 601-618. | MR | Zbl
, 1989, , 1961,