Stability of lagrangian duality for nonconvex quadratic programming. Solution methods and applications in computer vision
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 31 (1997) no. 1, p. 57-90
@article{M2AN_1997__31_1_57_0,
     author = {Pham Dinh Tao and Thai Quynh Phong and Horaud, Radu and Quan, Long},
     title = {Stability of lagrangian duality for nonconvex quadratic programming. Solution methods and applications in computer vision},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {31},
     number = {1},
     year = {1997},
     pages = {57-90},
     zbl = {0878.65045},
     mrnumber = {1432852},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1997__31_1_57_0}
}
Pham Dinh Tao; Thai Quynh Phong; Horaud, Radu; Quan, Long. Stability of lagrangian duality for nonconvex quadratic programming. Solution methods and applications in computer vision. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 31 (1997) no. 1, pp. 57-90. http://www.numdam.org/item/M2AN_1997__31_1_57_0/

[1] J. R. Clermont, M. E. De La Lande, P. D. Tao and A. Yassine, 1991, Analysis of plane and axisymmetric flows of incompressible fluids with the stream tube method : Numerical simulation by trust region algorithm, Inter. J. for Numer. Method in Fluids, 13, pp. 371-399. | MR 1116654 | Zbl 0739.76050

[2] J. R. Clermont, M. E. De La Lande, P. D. Tao and A. Yassine, 1992, Numerical simulation of axisymmetric converging using stream tube and a trust region optimization algorithm, Engineering Optimization, 19, pp. 187-281.

[3] O. Faugeras, 1992, What can be seen in three dimensions with an uncalibrated stereo rig ? In G. Sandini, editor, Proccedings of the 2nd European Conference on Computer Vision, Santa Margherita Ligure, Italy, pp. 563-578. Springer-Verlag, May. | MR 1263961

[4] O. D. Faugeras, 1992, 3D Computer Vision, M.I.T. Press.

[5] O. D. Faugeras, Q. T. Luong and S. J. Maybank, 1992, Camera Self-Calibration : Theory and Experiments, In G. Sandini, editor, Proceedings of the 2nd European Conference on Computer Vision, Santa Margherita Ligure, Italy, pp. 321-334, Springer-Verlag, May. | MR 1263961

[6] O. D. Faugeras and G. Toscani, 1987, Camera calibration for 3D computer vision, In Proceedings of International Workshop on Machine Vision and Machine Intelligence, Tokyo, Japan.

[7] R. Fletcher, 1980, Practical methods of Optimization, John Wiley, New York. | MR 955799 | Zbl 0439.93001

[8] D. M. Gay, 1981, Computing optimal constrained steps, SIAM J. Sci. Stat. Comput., 2, pp. 186-197. | MR 622715 | Zbl 0467.65027

[9] G. H. Golub and C. Van Loan, 1989, Matrix Computations, North Oxford Academic, Oxford. | MR 1002570 | Zbl 0559.65011

[10] T. S. Huang and O. D. Faugeras, 1989, Some properties of the E matrix en two-view motion estimation, IEEE Transactions on PAMI, 11(12), pp. 1310-1312, December.

[11] M. D. Hebden, 1973, An algorithm for minimization using exact second derivatives. Tech. Rep. TP515, Atomic energy research etablishment (AERE), Harwell, England.

[12] K. Levenberg, 1944, A method for the solution of certain nonlinear problems in least squares, Quart. Appl. Math., 2. | MR 10666 | Zbl 0063.03501

[13] P. J. Laurent, 1972, Approximation et Optimisation, Hermann, Paris. | MR 467080 | Zbl 0238.90058

[14] D. W. Marquardt, 1963, An algorithm for least squares estimation of nonlinear parameters, SIAM J. Appl. Math., 11. | MR 153071 | Zbl 0112.10505

[15] J. J. Moré, 1978, The Levenberg-Marquardt algorithm : Implementation and theory. In G.A, Waston, editor, Lecture Notes in Mathematics 630, pp. 105-116. Springer-Verlag, Berlin-Heidelberg-New York. | MR 483445 | Zbl 0372.65022

[16] J. J. Moré, 1983, Recent developments in algorithm and software for trust region methods. In A.Bachem, M. Grötschel and B.Korte, editors, Mathematical Proramming, The state of the art, pp. 258-287. Springer-Verlag, Berlin. | MR 717404 | Zbl 0546.90077

[17] J. J. Moré and D. C. Sorensen, 1981, Computing a trust region step, SIAM J. Sci. Statist. Comput., 4, pp. 553-572. | MR 723110 | Zbl 0551.65042

[18] R. Mohr, L. Quan and F. Veillon, Relative 3D Reconstruction using multiples uncalibrated images, The International Journal of Robotics Research, (to appear).

[19] R. T. Rockafellar, 1970, Convex Analysis, Princeton university Press, Princeton. | MR 274683 | Zbl 0193.18401

[20] G. A. Shultz, R. B. Schnabel and R. H. Byrd, 1985, A family of trust region based algorithms for unconstrained minimization with strong global convergence properties, SIAM J. on Numer. Anal., 22, pp. 47-67. | MR 772882 | Zbl 0574.65061

[21] T. Q. Phong, R. Horaud, P. D. Tao and A. Yassine, Object Pose from 2-D to 3-D Point and Line Correspondences, International Journal of Computer Visions (to appear).

[22] D. C. Soresen, 1982, Newton's method with a model trust region modification, SIAM J. Numer. Anal., 19(2), pp. 409-426, avril. | MR 650060 | Zbl 0483.65039

[23] Pham Dinh Tao, 1989, Méthodes numériques pour la minimisation d'une forme quadratique sur une boule euclidienne. Rapport de Recherche, Université Joseph Fourier, Grenoble.

[24] Pham Dinh Tao and Le Thi Hoai An, 1993, Minimisation d'une forme quadratique sur une boule et une sphère euclidiennes. Stabilité de la dualité lagrangienne. Optimalité globale. Méthodes numériques. Rapport de Recherche, LMI, CNRS URA 1378, INSA-Rouen.

[25] Pham Dinh Tao, Le Thi Hoai An and Thai Quynh Phong, Numerical methods for globally minimizing a quadratic form over euclidean ball an sphere (submitted).

[25] Pham Dinh Tao, S. Wang and A. Yassine, 1990, Training multi-layered neural network with a trust region based algorithm, Math. Modell. Numer. Anal., 24 (4), pp. 523-553. | Numdam | MR 1070968 | Zbl 0707.90097