@article{M2AN_1997__31_2_185_0, author = {Le Meur, Herv\'e}, title = {Non-uniqueness and linear stability of the one-dimensional flow of multiple viscoelastic fluids}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {185--211}, publisher = {Elsevier}, volume = {31}, number = {2}, year = {1997}, mrnumber = {1437120}, zbl = {0870.76005}, language = {en}, url = {http://archive.numdam.org/item/M2AN_1997__31_2_185_0/} }
TY - JOUR AU - Le Meur, Hervé TI - Non-uniqueness and linear stability of the one-dimensional flow of multiple viscoelastic fluids JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1997 SP - 185 EP - 211 VL - 31 IS - 2 PB - Elsevier UR - http://archive.numdam.org/item/M2AN_1997__31_2_185_0/ LA - en ID - M2AN_1997__31_2_185_0 ER -
%0 Journal Article %A Le Meur, Hervé %T Non-uniqueness and linear stability of the one-dimensional flow of multiple viscoelastic fluids %J ESAIM: Modélisation mathématique et analyse numérique %D 1997 %P 185-211 %V 31 %N 2 %I Elsevier %U http://archive.numdam.org/item/M2AN_1997__31_2_185_0/ %G en %F M2AN_1997__31_2_185_0
Le Meur, Hervé. Non-uniqueness and linear stability of the one-dimensional flow of multiple viscoelastic fluids. ESAIM: Modélisation mathématique et analyse numérique, Tome 31 (1997) no. 2, pp. 185-211. http://archive.numdam.org/item/M2AN_1997__31_2_185_0/
[1] "Global existence and one-dimensional non linear stabihty of shearing motions of viscoelastic fluids of Oldroyd type", M2AN Vol 24, n° 3, 369-401. | Numdam | MR | Zbl
& , 1990,[2] "On the stability of viscoelastic parallel shear flows", Technical Report, F.R.O.G. Michigan Technological University.
, , & , 1987,[3] "Existence results for the flow of viscoelastic fluids with a differential constitutive law". Nonlinear Analysis Theory, Methods & Applications, Vol. 15, No 9, 849-869. | MR | Zbl
& , 1990,[4] Zbl
& , 1972, Trans. Soc. Rheol., 16, 79. |[5] "Capillary instability due to a shear stress on the free surface of a viscoelastic fluid layer", J. Non-Newtonian Fluid Mech., 45, 171-186. | Zbl
, 1992,[6] "Linear stability of plane Couette flow of an Upper Convected Maxwell fluid", J. Non-Newtonian Fluid Mech., 22, 23-33. | Zbl
& , 1986,[7] "An experimental investigation of interfacial instabilities in multilayer flow of viscoelastic fluids. I. Incompatible polymer Systems", J. Non-Newtonian Fluid Mech., 45, 355-384.
& , 1992,[8] Existence, unicité et stabilité d'écoulements de fluides viscoélastiques avec interface, PhD Thesis of University Paris-Sud Orsay.
, 1994,[9] Fluid dynamics of Visco Elastic liquids, Applied Mathematical Sciences 84 Springer Verlag. | MR | Zbl
,[10] Stability of fluid motions, Vol. I, II Springer. | MR | Zbl
, 1976,[11] "A new constitutive equation derived from network theory", J. Non-Newtonian Fluid Mech, 2, 353-365. | Zbl
& , 1977,[12] Viscoélasticité non linéaire : Rhéologie et modélisation numérique, Ecoles CEA-EDF-INRIA, 27-30/01/ 1992.
,[13] "Numerical simulation of the flow of a viscoelastic fluid through an abrupt contraction", J. Non Newtonian Fluid Mech., 14, 279 299. | Zbl
& , 1984,[14] "On the linear stability of parallel shear flows of viscoelastic fluids of Jeffreys type". to appear.
,[15] "On the type of certain C0 Semigroups", Comm. Part. Diff. Eq., 18 (7 & 8), 1299-1307. | MR | Zbl
, 1993,[16] Applied and Computational Complex Analysis, vol. I, John Wiley, New-York. | MR | Zbl
, 1974,