Finite element convergence for the Darwin model to Maxwell's equations
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 31 (1997) no. 2, p. 213-249
@article{M2AN_1997__31_2_213_0,
     author = {Ciarlet, P. Jr. and Zou, Jun},
     title = {Finite element convergence for the Darwin model to Maxwell's equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {31},
     number = {2},
     year = {1997},
     pages = {213-249},
     zbl = {0887.65121},
     mrnumber = {1437121},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1997__31_2_213_0}
}
Ciarlet, P. Jr.; Zou, Jun. Finite element convergence for the Darwin model to Maxwell's equations. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 31 (1997) no. 2, pp. 213-249. http://www.numdam.org/item/M2AN_1997__31_2_213_0/

[1] R. A. Adams, 1975, Sobolev spaces. Academic Press, New York, 1975. | MR 450957 | Zbl 0314.46030

[2] J. J. Ambrosiano, S. T. Brandon and E. Sonnendrucker, 1995, A finite element formulation of the Darwin PIC model for use on unstructured grids J. Comput. Physics, 121(2), 281-297. | MR 1354305 | Zbl 0834.76052

[3] I. Babuska, 1973, The finite element method with Lagrange multipliers Numer. Math, 20, 179-192. | MR 359352 | Zbl 0258.65108

[4] M. Bercovier and O. Pironneau, 1979, Error estimates for the finite element method solution of the Stokes problem in the primitive variables Numer. Math., 33, 211-224. | MR 549450 | Zbl 0423.65058

[5] F. Brezzi, 1974, On the existence, uniqueness and approximation of saddle point problems arising from Lagrange multipliers. RAIRO Anal. Numer., 129-151. | Numdam | MR 365287 | Zbl 0338.90047

[6] F. Brezzi and M. Fortin, 1991, Mixed and hybrid finite element methods. Springer-Verlag, Berlin. | MR 1115205 | Zbl 0788.73002

[7] P. Ciarlet, 1978, The finite element method for elliptic problems. North-Holland, Amsterdam. | MR 520174 | Zbl 0383.65058

[8] P. Degond and P. A. Raviart, 1992, An analysis of the Darwin model of approximation to Maxwell's equations Forum Math., 4, 13-44. | MR 1142472 | Zbl 0755.35137

[9] V. Girault and P.-A. Raviart, 1986, Finite element methods for Navier-Stokes equations. Springer-Verlag, Berlin. | MR 851383 | Zbl 0585.65077

[10] P. Grisvard, 1985, Elliptic problems in nonsmooth domains. Pitman, Advanced Pubhshing Program, Boston. | MR 775683 | Zbl 0695.35060

[11] D. W. Hewett and J. K. Boyd, 1987, Streamlined Darwin simulation of nonneutral plasmas. J. Comput. Phys., 73, 166-181. | MR 888935 | Zbl 0611.76133

[12] D. W. Hewett and C. Nielson, 1978, A multidimensional quasineutral plasma simulation model. J. Comput. Phys. 29, 219-236. | Zbl 0388.76108

[13] P. Hood and G. Taylor, 1974, Navier-Stokes equation using mixed interpolation. In Oden, editor, Finite element methods in flow problems. UAH Press.

[14] J.-L. Lions and E. Magenes, 1968, Problèmes aux limites non homogènes et applications. Dunod, Paris. | Zbl 0165.10801

[15] J.-C. Nedelec, 1980, Mixed finite éléments in R3. Numer. Math., 35, 315-341. | MR 592160 | Zbl 0419.65069

[16] J.-C. Nedelec, 1982, Eléments finis mixtes incompressibles pour l'équation de Stokes dans R3. Numer. Math., 39, 97-112. | MR 664539 | Zbl 0488.76038

[17] C. Nlelson and H. R. Lewis, 1976, Particle code models in the non radiative limit. Methods Comput. Phys., 16, 367-388.

[18] P.-A. Raviart, 1993, Finite element approximation of the time-dependent Maxwell equations. Technical report, Ecole Polytechnique, France, GdR SPARCH #6.

[19] R. Verfurth, 1984, Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO Anal. Numer., 18(2), 175-182. | Numdam | MR 743884 | Zbl 0557.76037

[20] C. Weber, 1980, A local compactness theorem for Maxwell's equations. Math. Meth. in the Appl. Sci., 2, 12-25. | MR 561375 | Zbl 0432.35032