@article{M2AN_1997__31_6_733_0, author = {Alvarez-V\'asquez, L. J. and Via\~no, J. M.}, title = {Modeling and optimization of non-symmetric plates}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {733--763}, publisher = {Elsevier}, volume = {31}, number = {6}, year = {1997}, mrnumber = {1485753}, zbl = {0894.73088}, language = {en}, url = {http://archive.numdam.org/item/M2AN_1997__31_6_733_0/} }
TY - JOUR AU - Alvarez-Vásquez, L. J. AU - Viaño, J. M. TI - Modeling and optimization of non-symmetric plates JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1997 SP - 733 EP - 763 VL - 31 IS - 6 PB - Elsevier UR - http://archive.numdam.org/item/M2AN_1997__31_6_733_0/ LA - en ID - M2AN_1997__31_6_733_0 ER -
%0 Journal Article %A Alvarez-Vásquez, L. J. %A Viaño, J. M. %T Modeling and optimization of non-symmetric plates %J ESAIM: Modélisation mathématique et analyse numérique %D 1997 %P 733-763 %V 31 %N 6 %I Elsevier %U http://archive.numdam.org/item/M2AN_1997__31_6_733_0/ %G en %F M2AN_1997__31_6_733_0
Alvarez-Vásquez, L. J.; Viaño, J. M. Modeling and optimization of non-symmetric plates. ESAIM: Modélisation mathématique et analyse numérique, Tome 31 (1997) no. 6, pp. 733-763. http://archive.numdam.org/item/M2AN_1997__31_6_733_0/
[1] Sobolev spaces, Academic Press, New York. | MR | Zbl
, 1975,[2] The effect of different scalings in the modelling of nonlinearly elastic plates with rapidly varying thickness, Comp. Meth. Appl. Mech. Eng., 96, 1-24. | MR | Zbl
, , 1992,[3] Convexity and optimization in Banach spaces, Sijthoff and Noordhoff, Bucharest, 1978. | MR | Zbl
, , 1978,[4] Justification de modèles de plaques correspondant à différentes conditions aux limites, Thesis, Univ. Pierre et Marie Curie, Paris.
, 1981,[5] A remark on the von Karman Equations, Comp. Meth. Appl. Mech. Eng., 37, 79-92. | MR | Zbl
, , 1983,[6] Asymptotic thermoelastic behavior of flat plates, Quart. Appl. Math., 45, 645-667. | MR | Zbl
, , 1987,[7] Opérateurs maximaux monotones et semigroupes de contractions dans les espces de Hilbert, North-Holland. | Zbl
, 1973,[8] The effect of a thin inclusion of high rigidity in an elastic body, Math. Meth. Appl. Sci., 2, 251-270. | MR | Zbl
, 1980,[9] Análisis numerico de algunos problemas de optimización estructural, Thesis, Universidad de Santiago de Compostela.
, 1982,[10] Optimality conditions and numerical approximations for some optimal design problems, Control Cibernet, 19, 73-91. | MR | Zbl
, 1990,[11] Optimisation: Théorie et Algorithmes, Dunod, Paris. | MR | Zbl
, 1971,[12] A justification of the von Karman equations, Arch. Rat. Mech. Anal., 73, 349-389. | MR | Zbl
, 1980,[13]Mathematical Elasticity, Vol. 1, North-Holland, Amsterdam. | MR | Zbl
, 1988,[14] Plates and junctions in elastic multi-structures, Masson, Paris. | MR | Zbl
, 1990,[15] A justification of the two dimensional linear plate model, J. Mécanique, 18, 315-344. | MR | Zbl
, , 1979,[16] A justification of a nonlinear model in plate theory, Comp. Meth. Appl. Mech. Eng., 17/18, 222-258. | MR | Zbl
, , 1979,[17] Two-dimensional approximation of three-dimensional eigenvalue problems in plate theory, Comp. Meth. Appl. Mech. Eng., 26, 145-172. | MR | Zbl
, , 1981,[18] Justification of the boundary conditions of a clamped plate by an asyptotic analysis, Asymptotic Analysis, 2, 257-277. | MR | Zbl
, , 1989,[19] Justification of the two-dimensional equations of a linearly elastic shallow shell, Comm. Pure Appl. Math., 45,327-360. | MR | Zbl
, , 1992,[20] Une justification des équations de Maguerre von Karman pour les coques peu profondes, C. R. Acad. Sc. Paris, 301, 857-860. | MR | Zbl
, , 1985,[21] Les équations de von Karman, Lecture Notes in Mathematics, vol. 826 Springer Verlag, Berlin. | MR | Zbl
, , 1980,[22] Asymptotic theory and analysis for displacements and stress distribution in non linear elstic slender rods, J. Elasticity, 19, 111-161. | MR | Zbl
, , , , , 1988,[23] Reinforced and honey comb structures, J. Math. Pures Appl., 65, 403-422. | MR | Zbl
, , 1988,[24] Justification de modèles de plaques non lineaires pour des lois de comportement générales, Mod. Math. Anal. Num., 20, 225-249. | Numdam | MR | Zbl
, 1986,[25] Sur une justification des modèles de plaques et coques par les méthodes asymptotiques, Thesis, Univ. Pierre et Marie Curie.
, 1980,[26] Comparaison entre les modèles tridimensionnels et bidimensionnels de plaques en élasticité, RAIRO Anal. Num., 15, 331-369. | Numdam | MR | Zbl
, 1981,[27] A classification of thin shell theories, Acta. Appl. Math., 4, 15-63. | MR | Zbl
, 1985,[28] Une théorie asymptotique des plaques minces en élasticité linéaire, Masson, Paris. | MR | Zbl
, 1986,[29] Les inéquations en Mécanique et en Physique, Dunod, Paris. | MR | Zbl
, , 1972,[30] Modèles de coques élastiques non linéaires : méthode asymptotique et existence de solution, Thesis, Univ. Pierre et Marie Curie, Paris.
, 1989,[31] A boundary-layer theory for elastic plates, Comm. Pure. Appl. Math., 14, 1-33. | MR | Zbl
, , 1961,[32] Derivation of an approximated theory of bending of a plate by the method of asymptotic integration of the equations of the theory of elasticity, Plikl. Mat. Mech., 26, 668-686. | MR | Zbl
, 1962,[33] Finite element approximation for optimal shape design, John Wiley, Chichester. | MR | Zbl
, , 1988,[34] Applied Optimal Design Mechanical and Strutural Systems, John Wiley, New York.
, , 1979,[35] Optimal control of a varitional inequality with applications to structural analysis. Optimal design of a beam with unilateral supports, Appl. Math. Optim., 11, 111-143. | MR | Zbl
, , , 1984,[36] Optimal control of a variational unequlity with applications to structural analysis II. Local optimization of the stress in a beam III. Optimal design of an elastic plate, Appl. Math. Optim., 13, 117-136. | MR | Zbl
, , , 1984,[37] A now model for thin plates with rapidly varying thickness, Int. J. Solids Structures, 20, 333-350. | MR | Zbl
, , 1984,[38] A new model for thin plates with rapidly varying thickness. II : A convergence proof, Quart. Appl. Math., 43, 1-22. | MR | Zbl
, , 1985,[39] A new model for thin plates with rapidly varying thickness. III: Comparison of different scalings, Quart. Appl. Math., 44, 35-48. | MR | Zbl
, , 1986,[40] A new model for nonlinear elastic plates with rapidly varying thickness, Applicable Analysis, 32, 107-127. | MR | Zbl
, 1989,[41] A new model for nonlinear elastic plates with rapidly varying thickness II: The effect of the behavior of the forces when the thickness approaches zero, Applicable Analysis, 39, 151-164. | MR | Zbl
, 1990,[42] Contribution à l'étude des modèles d'évolution de plaques et à l'approximation d'équations d'évolution linéaires de second ordre par des méthodes multipas, Thesis, Univ. Pierre et Marie Curie, Paris.
, 1980,[43] Construction d'un modèle d'évolution de plaques avec terme d'inertie de rotation, Ann. Mat. Pura Appl., 139, 361-400. | MR | Zbl
, 1985,[44] Asymptotic modeling of the elastodynamics of a multistructure, Asymptotic Analysis, 6, 73-108. | MR | Zbl
, 1992,[45] Mathematical modelling of rods, in: (P. G. Ciarlet, J. L. Lions, eds.) Handbook of numerical analysis, Vol. IV, North-Holland, Amsterdam. | MR | Zbl
, , 1996,[46] Contribution à l'étude des modèles bidimensionnelles en thermoélasticité de plaques d'épaisseur non constante, Thesis, Univ. Pierre et Marie Curie, Paris.
, 1983,[47] Functional Analysis, Springer Verlag, Berlin.
, 1975,