@article{M2AN_1998__32_7_817_0, author = {Verf\"urth, R.}, title = {A posteriori error estimates for nonlinear problems. $L^r$-estimates for finite element discretizations of elliptic equations}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {817--842}, publisher = {Elsevier}, volume = {32}, number = {7}, year = {1998}, mrnumber = {1654436}, zbl = {0920.65064}, language = {en}, url = {http://archive.numdam.org/item/M2AN_1998__32_7_817_0/} }
TY - JOUR AU - Verfürth, R. TI - A posteriori error estimates for nonlinear problems. $L^r$-estimates for finite element discretizations of elliptic equations JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1998 SP - 817 EP - 842 VL - 32 IS - 7 PB - Elsevier UR - http://archive.numdam.org/item/M2AN_1998__32_7_817_0/ LA - en ID - M2AN_1998__32_7_817_0 ER -
%0 Journal Article %A Verfürth, R. %T A posteriori error estimates for nonlinear problems. $L^r$-estimates for finite element discretizations of elliptic equations %J ESAIM: Modélisation mathématique et analyse numérique %D 1998 %P 817-842 %V 32 %N 7 %I Elsevier %U http://archive.numdam.org/item/M2AN_1998__32_7_817_0/ %G en %F M2AN_1998__32_7_817_0
Verfürth, R. A posteriori error estimates for nonlinear problems. $L^r$-estimates for finite element discretizations of elliptic equations. ESAIM: Modélisation mathématique et analyse numérique, Tome 32 (1998) no. 7, pp. 817-842. http://archive.numdam.org/item/M2AN_1998__32_7_817_0/
[1] Sobolev Spaces. Academic Press, New York, 1975. | MR | Zbl
,[2] Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15, 736-754 (1978). | MR | Zbl
and ,[3] A posteriori error estimates for the finite element method. Int. J. Numer. Methods in Engrg. 12, 1597-1615 (1978). | Zbl
and ,[4] A posteriori error estimation for nonlinear problems by dual techniques. Preprint, Universität Freiburg, 1995.
and ,[5] Analyse numérique d'indicateurs d'erreur. Preprint R 93025, Université Paris VI, 1993.
, and ,[6] The Finite Element Method for Elliptic Problems. North Holland, Amsterdam, 1978. | MR | Zbl
,[7] Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9, 77-84 (1975). | Numdam | MR | Zbl
,[8] Elliptic Boundary Value Problems on Corner Domains. Springer, Lecture Notes in Mathematics 1341, Berlin, 1988. | MR | Zbl
,[9] An adaptive finite element method with efficient maximum norm error control for elliptic problems. Math. Models and Math. in Appl. Sci. 4, 313-329 (1994). | MR | Zbl
,[10] An adaptive finite element method for linear elliptic problems. Math. Comput. 50, 361-383 (1988). | MR | Zbl
and ,[11] Adaptive finite element methods for parabolic problems I. A linear model problem. SIAM J. Numer. Anal. 28, 43-77 (1991). | MR | Zbl
and ,[12] Adaptive finite element methods for parabolic problems IV. Nonlinear problems. Chalmers University of Göteborg, Preprint 1992, 44 (1992). | MR | Zbl
and ,[13] Finite Element Approximation of the Navier-Stokes Equations. Computational Methods in Physics, Springer, Berlin, 2nd édition, 1986. | MR | Zbl
and ,[14] Elliptic Problems in Nonsmooth Domains. Pitman, Boston, 1985. | MR | Zbl
,[15] Adaptive finite element methods in computational mechanics. Comp. Math. Appl. Mech. Engrg. 101, 143-181 (1992). | MR | Zbl
and ,[16] Pointwise a posteriori error estimates for elliptic problems on highly graded meshes. Math. Comput. 64, 1-22 (1995). | MR | Zbl
,[17] Consistency, stability, a priori, and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems. Numer. Math. 69, 213-231 (1994). | MR | Zbl
and ,[18] A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations. Math. Comput. (206), 445-475 (1994). | MR | Zbl
,[19] A posteriori error estimates for nonlinear problems. Finite element discretizations of parabolic problems. Bericht Nr. 180, Ruhr-Universität Bochum, 1995. | Zbl
,[20] A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner Series in advances in numerical mathematics, Stuttgart, 1996. | Zbl
,