A priori and a posteriori error bounds for a nonconforming linear finite element approximation of a non-newtonian flow
ESAIM: Modélisation mathématique et analyse numérique, Tome 32 (1998) no. 7, pp. 843-858.
@article{M2AN_1998__32_7_843_0,
     author = {Bao, Weizhu and Barrett, John W.},
     title = {A priori and a posteriori error bounds for a nonconforming linear finite element approximation of a non-newtonian flow},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {843--858},
     publisher = {Elsevier},
     volume = {32},
     number = {7},
     year = {1998},
     mrnumber = {1654432},
     zbl = {0912.76025},
     language = {en},
     url = {http://archive.numdam.org/item/M2AN_1998__32_7_843_0/}
}
TY  - JOUR
AU  - Bao, Weizhu
AU  - Barrett, John W.
TI  - A priori and a posteriori error bounds for a nonconforming linear finite element approximation of a non-newtonian flow
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 1998
SP  - 843
EP  - 858
VL  - 32
IS  - 7
PB  - Elsevier
UR  - http://archive.numdam.org/item/M2AN_1998__32_7_843_0/
LA  - en
ID  - M2AN_1998__32_7_843_0
ER  - 
%0 Journal Article
%A Bao, Weizhu
%A Barrett, John W.
%T A priori and a posteriori error bounds for a nonconforming linear finite element approximation of a non-newtonian flow
%J ESAIM: Modélisation mathématique et analyse numérique
%D 1998
%P 843-858
%V 32
%N 7
%I Elsevier
%U http://archive.numdam.org/item/M2AN_1998__32_7_843_0/
%G en
%F M2AN_1998__32_7_843_0
Bao, Weizhu; Barrett, John W. A priori and a posteriori error bounds for a nonconforming linear finite element approximation of a non-newtonian flow. ESAIM: Modélisation mathématique et analyse numérique, Tome 32 (1998) no. 7, pp. 843-858. http://archive.numdam.org/item/M2AN_1998__32_7_843_0/

[1] J. Baranger and H. El Amri, Estimateurs a posteriori d'erreur pour le calcul adaptatif d'écoulements quasi-Newtoniens, RAIRO M2AN 25, 31-48 (1991). | Numdam | MR | Zbl

[2] J. Baranger and H. El Amri, A posteriori error estimators for mixed finite element approximation of some quasi-Newtonian flows, Mat. Aplic. Comp. 10, 89-102 (1991). | MR | Zbl

[3] J. Baranger and K. Najib, Analyse numérique des écoulements quasi-Newtoniens dont la viscosité obéit à la loi puissance ou la loi de Carreau. Numer. Math. 58, 35-49 (1990). | MR | Zbl

[4] J. W. Barrett and W. B. Liu, Finite element error analysis of a quasi-Newtonian flow obeying the Carreau or power law, Numer. Math. 64, 433-453 (1993). | MR | Zbl

[5] J. W. Barrett and W. B. Liu, Quasi-norm error bounds for the finite element approximation of a non-Newtonian flow, Numer. Math. 68, 437-456 (1994). | MR | Zbl

[6] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland (1978). | MR | Zbl

[7] P. Clément, Approximation by finite element functions using local regularization, RAIRO Anal. Numér. 9, 77-84 (1975). | Numdam | MR | Zbl

[8] M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations, RAIRO Anal. Numér. 3, 33-75 (1973). | Numdam | MR | Zbl

[9] E. Dari, R. Durán and C. Padra, Error estimators for nonconforming finite element approximations of the Stokes problem, Math. Comp. 64, 1017-1033 (1995). | MR | Zbl

[10] Q. Du and M. D. Gunzburger, Finite-element approximations of a Ladyzhenskaya model for stationary incompressible viscous flow, SIAM J. Numer. Anal. 27, 1-19 (1990). | MR | Zbl

[11] R. S. Falk and M. E. Morley, Equivalence of finite element methods for problems in elasticity, SIAM J. Numer. Anal. 27, 1486-1505 (1990). | MR | Zbl

[12] D. M. Fall, Régularité de l'écoulement stationnaire d'un fluide non newtonien, C. R. Acad. Sci. Paris 311, 531-534 (1990). | MR | Zbl

[13] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer (1986). | MR | Zbl

[14] R. Kouhia and R. Stenberg, A linear nonconforming finite element method for nearly incompressible elasticity and Stokes flow, Comput. Methods Appl. Mech. Engrg. 124, 195-212 (1995). | MR | Zbl

[15] P. P. Mosolov and V. P. Mjasnikov, A proof of Korn's inequality, Soviet Math. Dokl. 12, 1618-1622 (1971). | Zbl

[16] D. Sandri, Sur l'approximation numérique des écoulements quasi-Newtoniens dont la viscosité suit la loi puissance ou la loi de Carreau, RAIRO M2AN 27, 131-155 (1993). | Numdam | MR | Zbl

[17] R. Verfürth, A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations, Math. Comp. 62, 445-475 (1994). | MR | Zbl

[18] R. Verfürth, A posteriori error estimators for the Stokes equations II non-conforming discretizations, Numer. Math. 60, 235-249 (1991). | MR | Zbl