@article{M2AN_1999__33_1_1_0, author = {Ito, Kazufumi and Kunisch, Karl}, title = {An active set strategy based on the augmented lagrangian formulation for image restoration}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {1--21}, publisher = {EDP-Sciences}, volume = {33}, number = {1}, year = {1999}, mrnumber = {1685741}, zbl = {0918.65050}, language = {en}, url = {http://archive.numdam.org/item/M2AN_1999__33_1_1_0/} }
TY - JOUR AU - Ito, Kazufumi AU - Kunisch, Karl TI - An active set strategy based on the augmented lagrangian formulation for image restoration JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1999 SP - 1 EP - 21 VL - 33 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/item/M2AN_1999__33_1_1_0/ LA - en ID - M2AN_1999__33_1_1_0 ER -
%0 Journal Article %A Ito, Kazufumi %A Kunisch, Karl %T An active set strategy based on the augmented lagrangian formulation for image restoration %J ESAIM: Modélisation mathématique et analyse numérique %D 1999 %P 1-21 %V 33 %N 1 %I EDP-Sciences %U http://archive.numdam.org/item/M2AN_1999__33_1_1_0/ %G en %F M2AN_1999__33_1_1_0
Ito, Kazufumi; Kunisch, Karl. An active set strategy based on the augmented lagrangian formulation for image restoration. ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 1, pp. 1-21. http://archive.numdam.org/item/M2AN_1999__33_1_1_0/
[1] Image selective smoothing and edge detection by nonlinear diffusion, II SIAM J Numer. Anal. 29 (1992) 845-866. | MR | Zbl
, and ,[2] Analysis of bounded variation penalty methods for ill-posed problems. Inverse Problems 10 (1994) 1217-1229. | MR | Zbl
and ,[3] Constraint Optimization and Lagrange Multiplier Methods. Academic Press, Paris (1982). | MR | Zbl
,[4] Image selective smoothing and edge detection by nonlinear diffusion SIAM J. Numer. Anal. 29 (1992) 182-193. | MR | Zbl
, , and ,[5] Recovery of blocky images from noisy and blurred data. Preprint. | MR | Zbl
and ,[6] Infinite Dimensional Optimization and Convexity. The University of Chicago Press, Chicago (1983). | MR | Zbl
and ,[7] Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston (1984). | MR | Zbl
,[8] Augmented Lagrangian methods for nonsmooth convex optimization in Hilbert spaces. To appear in Nonliner Analysis, Theory, Methods and Applications. | Zbl
and ,[9] Augmented Lagrangian Formulation of Nonsmooth, Convex Optimization in Hilbert Spaces, in Lecture Notes in Pure and Applied Mathematics Control of Partial Differential Equations and Applications, E. Casas. Marcel Dekker Eds., 174 (1995) 107-117. | MR | Zbl
and ,[10] Nonlinear total variation based noise removal algorithms. Physica D 60 (1992) 259-268. | Zbl
, and ,[11] Total variation regularization for ill-posed problems. Technical Report, Department of Mathematical Sciences, Montana State University.
,