An active set strategy based on the augmented lagrangian formulation for image restoration
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 33 (1999) no. 1, pp. 1-21.
@article{M2AN_1999__33_1_1_0,
     author = {Ito, Kazufumi and Kunisch, Karl},
     title = {An active set strategy based on the augmented lagrangian formulation for image restoration},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     pages = {1--21},
     publisher = {EDP-Sciences},
     volume = {33},
     number = {1},
     year = {1999},
     zbl = {0918.65050},
     mrnumber = {1685741},
     language = {en},
     url = {http://archive.numdam.org/item/M2AN_1999__33_1_1_0/}
}
TY  - JOUR
AU  - Ito, Kazufumi
AU  - Kunisch, Karl
TI  - An active set strategy based on the augmented lagrangian formulation for image restoration
JO  - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY  - 1999
DA  - 1999///
SP  - 1
EP  - 21
VL  - 33
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/item/M2AN_1999__33_1_1_0/
UR  - https://zbmath.org/?q=an%3A0918.65050
UR  - https://www.ams.org/mathscinet-getitem?mr=1685741
LA  - en
ID  - M2AN_1999__33_1_1_0
ER  - 
%0 Journal Article
%A Ito, Kazufumi
%A Kunisch, Karl
%T An active set strategy based on the augmented lagrangian formulation for image restoration
%J ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
%D 1999
%P 1-21
%V 33
%N 1
%I EDP-Sciences
%G en
%F M2AN_1999__33_1_1_0
Ito, Kazufumi; Kunisch, Karl. An active set strategy based on the augmented lagrangian formulation for image restoration. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 33 (1999) no. 1, pp. 1-21. http://archive.numdam.org/item/M2AN_1999__33_1_1_0/

[1] L. Alvarez, P.L. Lions and J.M. Morel, Image selective smoothing and edge detection by nonlinear diffusion, II SIAM J Numer. Anal. 29 (1992) 845-866. | MR | Zbl

[2] R. Acar and C.R. Vogel, Analysis of bounded variation penalty methods for ill-posed problems. Inverse Problems 10 (1994) 1217-1229. | MR | Zbl

[3] D.P. Bertsekas, Constraint Optimization and Lagrange Multiplier Methods. Academic Press, Paris (1982). | MR | Zbl

[4] F. Catte, P.L. Lions, J.M. Morel and T. Colle, Image selective smoothing and edge detection by nonlinear diffusion SIAM J. Numer. Anal. 29 (1992) 182-193. | MR | Zbl

[5] D.C. Dobson and F. Santosa, Recovery of blocky images from noisy and blurred data. Preprint. | MR | Zbl

[6] I. Ekeland and T. Turnbull, Infinite Dimensional Optimization and Convexity. The University of Chicago Press, Chicago (1983). | MR | Zbl

[7] E. Giusti, Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston (1984). | MR | Zbl

[8] K. Ito and K. Kumsch, Augmented Lagrangian methods for nonsmooth convex optimization in Hilbert spaces. To appear in Nonliner Analysis, Theory, Methods and Applications. | Zbl

[9] K. Ito and K. Kunisch, Augmented Lagrangian Formulation of Nonsmooth, Convex Optimization in Hilbert Spaces, in Lecture Notes in Pure and Applied Mathematics Control of Partial Differential Equations and Applications, E. Casas. Marcel Dekker Eds., 174 (1995) 107-117. | MR | Zbl

[10] L.I. Rudin, S. Osher and E Fatemi, Nonlinear total variation based noise removal algorithms. Physica D 60 (1992) 259-268. | Zbl

[11] C.R. Vogel, Total variation regularization for ill-posed problems. Technical Report, Department of Mathematical Sciences, Montana State University.