@article{M2AN_1999__33_1_99_0, author = {Wang, Song}, title = {A new exponentially fitted triangular finite element method for the continuity equations in the drift-diffusion model of semiconductor devices}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {99--112}, publisher = {EDP-Sciences}, volume = {33}, number = {1}, year = {1999}, mrnumber = {1685746}, zbl = {0961.82030}, language = {en}, url = {http://archive.numdam.org/item/M2AN_1999__33_1_99_0/} }
TY - JOUR AU - Wang, Song TI - A new exponentially fitted triangular finite element method for the continuity equations in the drift-diffusion model of semiconductor devices JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1999 SP - 99 EP - 112 VL - 33 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/item/M2AN_1999__33_1_99_0/ LA - en ID - M2AN_1999__33_1_99_0 ER -
%0 Journal Article %A Wang, Song %T A new exponentially fitted triangular finite element method for the continuity equations in the drift-diffusion model of semiconductor devices %J ESAIM: Modélisation mathématique et analyse numérique %D 1999 %P 99-112 %V 33 %N 1 %I EDP-Sciences %U http://archive.numdam.org/item/M2AN_1999__33_1_99_0/ %G en %F M2AN_1999__33_1_99_0
Wang, Song. A new exponentially fitted triangular finite element method for the continuity equations in the drift-diffusion model of semiconductor devices. ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 1, pp. 99-112. http://archive.numdam.org/item/M2AN_1999__33_1_99_0/
[1] Relaxation methods applied to determine the motion, in two dimensions, of a viscous fluid past a fixed cylinder. Quart. J. Mech. Appl Math. 8 (1955) 129-145. | MR | Zbl
, ,[2] Some upwinding techniques for finite element approximations of convection-diffusion equations. Numer. Math. 58 (1990) 185-202. | MR | Zbl
, , , ,[3] Two-dimensional exponentially fitting and applications to semiconductor device equations. SIAM J. Numer. Anal 26 (1989) 1342-1355. | MR | Zbl
, , ,[4] Finite Element Analysis of Semiconductor Devices: The FIELDAY Program. IBM J. Res. Develop. 25, (1981) 218-231.
, , , ,[5] The finite element method for elliptic problems. North-Holland, Amsterdam (1978). | MR | Zbl
,[6] Hexahedral finite elements for the stationary semiconductor device equations. Comp. Meth. Appl. Mech. Engrg. 84 (1990) 43-57. | MR | Zbl
, , , ,[7] A self-consistent iterative scheme for one-dimensional Steady State Transistor Calculation. IEEE Trans. Elec. Dev. 11 (1964) 455-465.
,[8] Inverse-Average-Type Finite Element Discrétisations of Selfadjoint Second-Order Elliptic Problems. Math. Comp. 51 (1988) 431-449. | MR | Zbl
, ,[9] Discretization of the Semiconductor Device Equations. From New Problems and New Solutions for Device and Process Modelling. J.J.H. Miller Ed. Boole Press, Dublin (1985).
,[10] A Triangular Mixed Finite Element Method for the Stationary Semiconductor Device Equations. RAIRO Modél. Math. Anal. Numér. 25 (1991) 441-463. | Numdam | MR | Zbl
and ,[11] An analysis of the Scharfetter-Gummel box method for the stationary semiconductor device equations. RAIRO Modél. Math. Anal. Numér. 28 (1994) 123-140. | Numdam | MR | Zbl
and ,[12] A tetrahedral mixed finite element method for the stationary semiconductor continuity equations. SIAM J. Numer. Anal. 31 (1994) 196-216. | MR | Zbl
and ,[13] Analysis of a Discretization Algorithm for Stationary Continuity Equations in Semiconductor Device Models. COMPEL 2 (1983) 117-139. | Zbl
,[14] Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Elec. Dev. 16 (1969) 64-77.
and ,[15] Discretization of time-dependent continuity equations. Proceedings of the 6th International NASECODE Conference. J.J.H. Miller Ed. Boole Press, Dublin (1988) 71-83. | MR | Zbl
,[16] Iterative Scheme for 1- and 2-Dimensional D.C.-Transistors. IEEE Trans. Elect. Dev. 24 (1977) 1123-1125.
,[17] The physics of semiconductor devices, 2nd ed. John Wiley & Sons, New York (1981).
,[18] Theory of Flow of Electrons and Holes in Germanium and Other Semiconductors. Bell Syst. Tech. J. 29 (1950) 560-607.
,