@article{M2AN_1999__33_5_965_0, author = {Grenier, Emmanuel}, title = {On the derivation of homogeneous hydrostatic equations}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {965--970}, publisher = {EDP-Sciences}, volume = {33}, number = {5}, year = {1999}, mrnumber = {1726718}, zbl = {0947.76013}, language = {en}, url = {http://archive.numdam.org/item/M2AN_1999__33_5_965_0/} }
TY - JOUR AU - Grenier, Emmanuel TI - On the derivation of homogeneous hydrostatic equations JO - ESAIM: Modélisation mathématique et analyse numérique PY - 1999 SP - 965 EP - 970 VL - 33 IS - 5 PB - EDP-Sciences UR - http://archive.numdam.org/item/M2AN_1999__33_5_965_0/ LA - en ID - M2AN_1999__33_5_965_0 ER -
Grenier, Emmanuel. On the derivation of homogeneous hydrostatic equations. ESAIM: Modélisation mathématique et analyse numérique, Tome 33 (1999) no. 5, pp. 965-970. http://archive.numdam.org/item/M2AN_1999__33_5_965_0/
[1] Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits. Ann. Inst. Fourier 16 (1996) 319-361. | Numdam | MR | Zbl
,[2] Homogeneous hydrostatic flows with convex velocity profiles, Nonlinearity 12 (1999) 495-512. | MR | Zbl
,[3] Comparaison du régime hydrostatique des fluides incompressibles non visqueux et du régime quasineutre des plasmas. Private communication (1998).
,[4] Reynolds.m, a matlab package to compute Reynolds numbers of shear layers. Preprint and package, available at http://www.dmi.ens.fr/equipes/edp/reynolds.html.
, and ,[5] Nonlinear instability in an ideal fluid. Ann. Inst. H. Poincaré. Anal Non Linéaire 14 (1997) 187-209. | Numdam | MR | Zbl
, and ,[6] On the stability of boundary layers of incompressible Euler equations. J. Differential Equations (to appear). | MR | Zbl
,[7] Boundary layers of 2D inviscid fluids from an Hamiltonian viewpoint. Math. Res. Lett. 6 (1999) 1-13. | MR | Zbl
,[8] On the nonlinear instability of Euler and Navier-Stokes equations (in preparation).
,[9] Mathematical topics in fluid Mechanics, Vol I, Incompressible models, in Oxford Lecture Series in Mathematics and its Applications, 3. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1996). | MR | Zbl
,[10] On the stability, or instabilité of certain fluid motion. Proc. London Math. Soc. 11 (1880) 57-70. | JFM
,