Interpolation of non-smooth functions on anisotropic finite element meshes
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 33 (1999) no. 6, p. 1149-1185
@article{M2AN_1999__33_6_1149_0,
     author = {Apel, Thomas},
     title = {Interpolation of non-smooth functions on anisotropic finite element meshes},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {33},
     number = {6},
     year = {1999},
     pages = {1149-1185},
     zbl = {0984.65113},
     mrnumber = {1736894},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1999__33_6_1149_0}
}
Apel, Thomas. Interpolation of non-smooth functions on anisotropic finite element meshes. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 33 (1999) no. 6, pp. 1149-1185. http://www.numdam.org/item/M2AN_1999__33_6_1149_0/

[1] Th. Apel, Finite-Elemente-Methoden über lokal verfeinerten Netzen für elliptische Probleme in Gebieten mit Kanten. Ph.D. thesis, TU Chemnitz (1991). | Zbl 0745.65059

[2] Th. Apel, Anisotropic interpolation error estimates for isoparametric quadrilateral finite elements. Computing 60 (1998)157-174. | MR 1606273 | Zbl 0897.65003

[3] Th. Apel, Anisotropic finite elements: Local estimates and applications. Teubner, Stuttgart (1999). | MR 1716824 | Zbl 0934.65121

[4] Th. Apel and M. Dobrowolski, Anisotropic interpolation with applications to the finite element method. Computing 47 (1992) 277-293. | MR 1155498 | Zbl 0746.65077

[5] Th. Apel and B. Heinrich, Mesh refinement and windowing near edges for some elliptic problem. SIAM J. Numer. Anal. 31 (1994) 695-708. | MR 1275108 | Zbl 0807.65122

[6] Th. Apel and G. Lube, Anisotropic mesh refinement in stabilized Galerkin methods. Numer. Math. 74 (1996) 261-282. | MR 1408603 | Zbl 0878.65097

[7] Th. Apel and G. Lube, Anisotropic mesh refinement for a singularly perturbed reaction diffusion model problem. Appl. Numer. Math. 26 (1998) 415-433. | MR 1612364 | Zbl 0933.65136

[8] Th. Apel and F. Milde, Comparison of several mesh refinement strategies near edges. Comm. Numer. Methods Engrg, 12 (1996) 373-381. | Zbl 0865.65086

[9] Th. Apel and S. Nicaise, Elliptic problems in domains with edges: anisotropic regularity and anisotropic finite element meshes, in Partial Differential Equations and Functional Analysis (In Memory of Pierre Grisvard), J. Cea, D. Chenais, G. Geymonat, and J.L. Lions Eds., Birkhäuser, Boston (1996) 18-34. Shortened version of Preprint SPC94_16, TU Chemnitz-Zwickau (1994). | MR 1399121 | Zbl 0854.35005

[10] Th. Apel and S. Nicaise, The finite element method with anisotropic mesh grading for the Poisson problem in domains with edges. Technical report, TU Chemnitz-Zwickau (1996). Improved version of Preprint SPC94_16, TU Chemnitz-Zwickau (1994), available only via ftp, server ftp.tu-chemnitz.de, directory pub/Local/mathematik/Apel, file anl.ps.Z.

[11] Th. Apel and S. Nicaise, The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges. Math. Methods Appl. Sci. 21 (1998) 519-549. | MR 1615426 | Zbl 0911.65107

[12] Th. Apel, A.-M. Sändig and J. R. Whiteman, Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains. Math. Methods Appl. Sci. 19 (1996) 63-85. | MR 1365264 | Zbl 0838.65109

[13] I. Babuška, R. B. Kellogg and J. Pitkäranta, Direct and inverse error estimates for finite elements with mesh refinements.Numer. Math. 33 (1979) 447-471. | MR 553353 | Zbl 0423.65057

[14] A. E. Beagles and J. R. Whiteman, Finite element treatment of boundary singularities by augmentation with non-exact singular functions. Numer. Methods Partial Differential Equations 2 (1986) 113-121. | MR 867853 | Zbl 0626.65112

[15] R. Becker, An adaptive finite element method for the incompressible Navier-Stokes equations on time-dependent domains. Ph.D. thesis, Ruprecht-Karls-Universität Heidelberg (1995). | Zbl 0847.76028

[16] J. H. Bramble and S. R. Hilbert, Estimation of linear functionals on Sobolev spaces with applications to Fourier transforms and spline interpolation. SIAM J. Numer. Anal 7 (1970) 112-124. | MR 263214 | Zbl 0201.07803

[17] J. H. Bramble and S. R. Hilbert, Bounds for a class of linear functionals with applications to Hermite interpolation. Numer. Math. 16 (1971) 362-369. | MR 290524 | Zbl 0214.41405

[18] P. G. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1978). | MR 520174 | Zbl 0383.65058

[19] P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77-84. | Numdam | MR 400739 | Zbl 0368.65008

[20] M. Dobrowolski and H.-G Roos, A priori estimates for the solution of convection-diffusion problems and interpolation on Shishkin meshes. Z. Anal. Anwendungen 16 (1997) 1001-1012. | MR 1615644 | Zbl 0892.35014

[21] T. Dupont and R. Scott, Polynomial approximation of functions in Sobolev spaces. Math. Comput. 34 (1980) 441-463. | MR 559195 | Zbl 0423.65009

[22] R. G. Durán, Error estimates for 3-d narrow finite elements. Math. Comput. 68 (1999) 187-199. | MR 1489970 | Zbl 0910.65078

[23] A. Kufner and A.-M. Sandig, Some Applications of Weighted Sobolev Spaces. Teubner, Leipzig (1987). | MR 926688 | Zbl 0662.46034

[24] G. Kunert, Error estimation for anisotropic tetrahedral and triangular finite element meshes. Preprint SFB393/97-17, TUChemnitz (1997).

[25] M. S. Lubuma and S. Nicaise, Dirichlet problems in polyhedral domains II: approximation by FEM and BEM. J. Comput. Appl. Math. 61 (1995) 13-27. | MR 1358044 | Zbl 0840.65110

[26] M. S. Lubuma and S. Nicaise, Finite element method for elliptic problems with edge corners. J.Comput. Appl. Math, (submitted). | Zbl 0936.65130

[27] L. A. Oganesyan and L. A. Rukhovets, Variational-difference methods for the solution of elliptic equations. Izd. Akad. Nauk Armyanskoi SSR, Jerevan (1979). In Russian. | MR 584442 | Zbl 0357.65088

[28] P. Oswald, Multilevel Finite Element Approximation: Theory and Applications. Teubner, Stuttgart (1994). | MR 1312165 | Zbl 0830.65107

[29] T. Von Petersdorff, Randwertprobleme der Elastizitätstheorie für Polyeder - Singularitäten und Approximationen mit Randelementmethoden. Ph.D. thesis, TH Darmstadt (1989). | Zbl 0709.73009

[30] L. R. Scott and S. Zhang, Finite element interpolation of non-smooth functions satisfying boundary conditions. Math. Comp.54 (1990) 483-493. | MR 1011446 | Zbl 0696.65007

[31] N. A. Shenk, Uniform error estimates for certain narrow Lagrangian finite elements. Math. Comp. 63 (1994) 105-119. | MR 1226816 | Zbl 0807.65003

[32] K. Siebert, An a posteriori error estimator for anisotropic refinement. Numer. Math. 73 (1996) 373-398. | MR 1389492 | Zbl 0873.65098

[33] E. P. Stephan and J. R. Whiteman, Singularities of the Laplacian at corners and edges of three-dimensional domains and their treatment with finite element methods. Math. Methods Appl Sci. 10 (1988) 339-350. | MR 949661 | Zbl 0671.35018

[34] H. Walden and R. B. Kellogg, Numerical determination of the fundamental eigenvalue for the Laplace operator on a spherical domain. J. Engrg. Math. 11 (1977) 299-318. | MR 471363 | Zbl 0367.65062