A “natural” norm for the method of characteristics using discontinuous finite elements : 2D and 3D case
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 33 (1999) no. 6, p. 1223-1240
@article{M2AN_1999__33_6_1223_0,
     author = {Baranger, Jacques and Machmoum, Ahmed},
     title = {A ``natural'' norm for the method of characteristics using discontinuous finite elements : 2D and 3D case},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {33},
     number = {6},
     year = {1999},
     pages = {1223-1240},
     zbl = {0948.65094},
     mrnumber = {1736897},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_1999__33_6_1223_0}
}
Baranger, Jacques; Machmoum, Ahmed. A “natural” norm for the method of characteristics using discontinuous finite elements : 2D and 3D case. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 33 (1999) no. 6, pp. 1223-1240. http://www.numdam.org/item/M2AN_1999__33_6_1223_0/

[1] J. Baranger and A. Machmoum, Une norme naturelle pour la méthode des caractéristiques en éléments finis discontinus : cas 1-D. RAIRO Modèl. Math, Anal. Numér. 30 (1996) 549-574. | Numdam | MR 1411391 | Zbl 0862.65050

[2] J. Baranger and A. Machmoum, Existence of approximate solutions and error bounds for viscoelastic fluid flow: Characteristics method. Comput. Methods Appl. Mech. Engrg. 148 (1997) 39-52. | MR 1460319 | Zbl 0923.76098

[3] F. Basombrio, Flows in viscoelastic fluids treated by the method of characteristics. J. Non-Newtonian Fluid Mech. 39 (1991)17-34. | Zbl 0718.76015

[4] A. Bermudez and J. Durany, La méthode des caractéristiques pour les problèmes de convection-diffusion stationnaires. RAIRO Modél. Math. Anal Numér. 21 (1987) 7-26. | Numdam | MR 882685 | Zbl 0613.65121

[5] M. Fortin and A. Fortin, Une note sur les méthodes de caractéristiques et de Lesaint-Raviart pour les problèmes hyperboliques stationnaires. RAIRO Modél Math. Anal Numér. 23 (1989) 593-596. | Numdam | MR 1025073 | Zbl 0687.65088

[6] M. Fortin and D. Esselaoui, A finite element procedure for viscoelastic flows. Int. J. Numer. Methods Fluids 7 (1987) 1035-1052. | Zbl 0634.76007

[7] V. Girault and P.A. Raviart, Finite element method for Navier Stokes equations, Theory and Algorithms. Springer, Berlin-Heidelberg-New York (1986). | MR 851383 | Zbl 0585.65077

[8] C. Johnson and J. Pitkaranta, An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comp. 46 (1987) 1-26. | MR 815828 | Zbl 0618.65105

[9] P. Lesaint and P.A. Raviart, On a finite element method for solving the neutron transport equations, in Mathematical aspects of finite element in partial differential equations, C. de Boor Ed., Academic Press (1974) 89-123. | MR 658142 | Zbl 0341.65076

[10] A. Machmoum, Méthodes numériques pour les fluides viscoélastiques : méthode des caractéristiques pour les modèles différentiels et intégraux. Thèse, Université Lyon 1, Laboratoire d'analyse numérique (1996).

[11] T.E. Paterson, A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation. SIAM J. Numer. Anal. 26 (1991) 133-140. | MR 1083327 | Zbl 0729.65085