Limiting behavior for an iterated viscosity
ESAIM: Modélisation mathématique et analyse numérique, Volume 34 (2000) no. 2, pp. 353-376.
@article{M2AN_2000__34_2_353_0,
     author = {Foias, Ciprian and Jolly, Michael S. and Manley, Oscar P.},
     title = {Limiting behavior for an iterated viscosity},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {353--376},
     publisher = {Dunod},
     address = {Paris},
     volume = {34},
     number = {2},
     year = {2000},
     mrnumber = {1765664},
     zbl = {0962.76022},
     language = {en},
     url = {http://archive.numdam.org/item/M2AN_2000__34_2_353_0/}
}
TY  - JOUR
AU  - Foias, Ciprian
AU  - Jolly, Michael S.
AU  - Manley, Oscar P.
TI  - Limiting behavior for an iterated viscosity
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2000
SP  - 353
EP  - 376
VL  - 34
IS  - 2
PB  - Dunod
PP  - Paris
UR  - http://archive.numdam.org/item/M2AN_2000__34_2_353_0/
LA  - en
ID  - M2AN_2000__34_2_353_0
ER  - 
%0 Journal Article
%A Foias, Ciprian
%A Jolly, Michael S.
%A Manley, Oscar P.
%T Limiting behavior for an iterated viscosity
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2000
%P 353-376
%V 34
%N 2
%I Dunod
%C Paris
%U http://archive.numdam.org/item/M2AN_2000__34_2_353_0/
%G en
%F M2AN_2000__34_2_353_0
Foias, Ciprian; Jolly, Michael S.; Manley, Oscar P. Limiting behavior for an iterated viscosity. ESAIM: Modélisation mathématique et analyse numérique, Volume 34 (2000) no. 2, pp. 353-376. http://archive.numdam.org/item/M2AN_2000__34_2_353_0/

[1] P. Constantin and C. Foias, Navier-Stokes Equations, Univ. Chicago Press, Chicago, IL (1988). | MR | Zbl

[2] N. Dunford and J. T. Schwartz, Book Linear Operators, Wiley, New York (1958) Part II. | Zbl

[3] C. Foias, What do the Navier-Stokes equations tell us about turbulence? in Harmonic analysis and nonlinear differential equations (Riverside, CA, 1995). Contemp. Math. 208 (1997) 151-180. | MR | Zbl

[4] C. Foias, O. P. Manley and R. Temam, Modelling of the interaction of small and large eddies in two-dimensional turbulent flows. RAIRO Modél. Math. Anal. Numér. 22 (1988) 93-118. | Numdam | MR | Zbl

[5] C. Foias, O. P. Manley and R. Temam, Approximate inertial manifolds and effective viscosity in turbulent flows. Phys. Fluids A 3 (1991) 898-911. | MR | Zbl

[6] C. Foias, O. P. Manley and R. Temam, Iterated approximate inertial manifolds for Navier-Stokes equations in 2-D. J. Math. Anal. Appl. 178 (1994) 567-583. | MR | Zbl

[7] C. Foias, O. P. Manley, R. Temam and Y. M. Treve, Asymptotic analysis of the Navier-Stokes equations. Phys. D 9 (1983) 157-188. | MR | Zbl

[8] C. Foias and B. Nicolaenko, On the algebra of the curl operator in the Navier-Stokes equations (in preparation).

[9] R. H. Kraichnan, Inertial ranges in two-dimensional turbulence. Phys. Fluids 10 (1967) 417-1423.

[10] W. Heisenberg, On the theory of statistical and isotropic turbulence. Proc. Roy.Soc. Lond. Ser. A. 195 (1948) 402-406. | MR | Zbl

[11] E. Hopf, A mathematical example displaying features of turbulence. Comm. Appl. Math. 1 (1948) 303-322. | MR | Zbl

[12] R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, 2nd édition, Springer-Verlag, New York (1997). | MR | Zbl

[13] T. Von Karman, Tooling up mathematics for engineering. Quarterly Appl. Math. 1 (1943) 2-6.