@article{M2AN_2000__34_2_353_0, author = {Foias, Ciprian and Jolly, Michael S. and Manley, Oscar P.}, title = {Limiting behavior for an iterated viscosity}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {353--376}, publisher = {Dunod}, address = {Paris}, volume = {34}, number = {2}, year = {2000}, mrnumber = {1765664}, zbl = {0962.76022}, language = {en}, url = {http://archive.numdam.org/item/M2AN_2000__34_2_353_0/} }
TY - JOUR AU - Foias, Ciprian AU - Jolly, Michael S. AU - Manley, Oscar P. TI - Limiting behavior for an iterated viscosity JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2000 SP - 353 EP - 376 VL - 34 IS - 2 PB - Dunod PP - Paris UR - http://archive.numdam.org/item/M2AN_2000__34_2_353_0/ LA - en ID - M2AN_2000__34_2_353_0 ER -
%0 Journal Article %A Foias, Ciprian %A Jolly, Michael S. %A Manley, Oscar P. %T Limiting behavior for an iterated viscosity %J ESAIM: Modélisation mathématique et analyse numérique %D 2000 %P 353-376 %V 34 %N 2 %I Dunod %C Paris %U http://archive.numdam.org/item/M2AN_2000__34_2_353_0/ %G en %F M2AN_2000__34_2_353_0
Foias, Ciprian; Jolly, Michael S.; Manley, Oscar P. Limiting behavior for an iterated viscosity. ESAIM: Modélisation mathématique et analyse numérique, Volume 34 (2000) no. 2, pp. 353-376. http://archive.numdam.org/item/M2AN_2000__34_2_353_0/
[1] Navier-Stokes Equations, Univ. Chicago Press, Chicago, IL (1988). | MR | Zbl
and ,[2] Book Linear Operators, Wiley, New York (1958) Part II. | Zbl
and ,[3] What do the Navier-Stokes equations tell us about turbulence? in Harmonic analysis and nonlinear differential equations (Riverside, CA, 1995). Contemp. Math. 208 (1997) 151-180. | MR | Zbl
,[4] Modelling of the interaction of small and large eddies in two-dimensional turbulent flows. RAIRO Modél. Math. Anal. Numér. 22 (1988) 93-118. | Numdam | MR | Zbl
, and ,[5] Approximate inertial manifolds and effective viscosity in turbulent flows. Phys. Fluids A 3 (1991) 898-911. | MR | Zbl
, and ,[6] Iterated approximate inertial manifolds for Navier-Stokes equations in 2-D. J. Math. Anal. Appl. 178 (1994) 567-583. | MR | Zbl
, and ,[7] Asymptotic analysis of the Navier-Stokes equations. Phys. D 9 (1983) 157-188. | MR | Zbl
, , and ,[8] On the algebra of the curl operator in the Navier-Stokes equations (in preparation).
and ,[9] Inertial ranges in two-dimensional turbulence. Phys. Fluids 10 (1967) 417-1423.
,[10] On the theory of statistical and isotropic turbulence. Proc. Roy.Soc. Lond. Ser. A. 195 (1948) 402-406. | MR | Zbl
,[11] A mathematical example displaying features of turbulence. Comm. Appl. Math. 1 (1948) 303-322. | MR | Zbl
,[12] Infinite-dimensional Dynamical Systems in Mechanics and Physics, 2nd édition, Springer-Verlag, New York (1997). | MR | Zbl
,[13] Tooling up mathematics for engineering. Quarterly Appl. Math. 1 (1943) 2-6.
,