Some models of Cahn-Hilliard equations in nonisotropic media
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 34 (2000) no. 3, p. 539-554
@article{M2AN_2000__34_3_539_0,
     author = {Miranville, Alain},
     title = {Some models of Cahn-Hilliard equations in nonisotropic media},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {Dunod},
     volume = {34},
     number = {3},
     year = {2000},
     pages = {539-554},
     zbl = {0965.35170},
     mrnumber = {1763524},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2000__34_3_539_0}
}
Miranville, Alain. Some models of Cahn-Hilliard equations in nonisotropic media. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 34 (2000) no. 3, pp. 539-554. http://www.numdam.org/item/M2AN_2000__34_3_539_0/

[1] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of partial differential equations satisfying general boundary conditions I, II, Comm. Pure Appl. Math. 12 (1959) 623-727 ; 17 (1964) 35-92. | Zbl 0093.10401

[2] A. Babin and B. Nicolaenko, Exponential attractors of reaction-diffusion Systems in an unbounded domain. J. Dyn. Differential Equations 7 (1995) 567-590. | MR 1362671 | Zbl 0846.35061

[3] A. V. Babin and M. I. Vishik, Attractors of evolution equations. North-Holland, Amsterdam (1991). | MR 1156492 | Zbl 0778.58002

[4] H. Brezis, Analyse fonctionnelle, théorie et applications. Masson (1983). | MR 697382 | Zbl 0511.46001

[5] J. W. Cahn, On spinodal decomposition. Acta Metall. 9 (1961) 795-801.

[6] J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform System I. Interfacial free energy. J. Chem. Phys. 2 (1958) 258-267.

[7] M. Carrive, A. Miranville, A. Piétrus and J. M. Rakotoson, The Cahn-Hilliard equation for an isotropic deformable continuum. Appl. Math. Letters 12 (1999) 23-28. | MR 1748727 | Zbl 0939.35042

[8] M. Carrive, A. Miranville and A. Piétrus, The Cahn-Hilliard equation for deformable elastic continua. Adv. Math. Sci. Appl. (to appear). | MR 1807441 | Zbl 0987.35156

[9] V. V. Chepyzhov and M. I. Vishik, Attractors of nonautonomous dynamical systems and their dimension. J. Math. Pures Appl. 73 (1994) 279-333. | MR 1273705 | Zbl 0838.58021

[10] L. Cherfils and A. Miranville, Generalized Cahn-Hilliard equations with a logarithmic free energy (submitted). | Zbl 1002.35062

[11] J. W. Cholewe and T. Dlotko, Global attractors of the Cahn-Hilliard system. Bull. Austral. Math. Soc. 49 (1994) 277-302. | MR 1265364 | Zbl 0803.35013

[12] A. Debussche and L. Dettori, On the Cahn-Hilliard equation with a logarithmic free energy. Nonlinear Anal. TMA 24 (1995) 1491-1514. | MR 1327930 | Zbl 0831.35088

[13] A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential attractors for dissipative evolution equations. Masson (1994). | MR 1335230 | Zbl 0842.58056

[14] M. Efendiev and A. Miranville, Finite dimensional attractors for a class of reaction-diffusion equations in Rn with a strong nonlinearity. Disc. Cont. Dyn. Systems 5 (1999) 399-424. | MR 1665748 | Zbl 0959.35025

[15] C. M. Elliot and S. Luckhauss, A generalized equation for phase separation of a multi-component mixture with interfacial free energy. Preprint.

[16] P. Fabrie and A. Miranville, Exponential attractors for nonautonomous first-order evolution equations. Disc. Cont. Dyn. Systems 4 (1998) 225-240. | MR 1617294 | Zbl 0980.34051

[17] C. Galusinski, Perturbations singulières de problèmes dissipatifs : étude dynamique via l'existence et la continuité d'attracteurs exponentiels. Thèse, Université Bordeaux-I (1996).

[18] C. Galusinski, M. Hnid and A. Miranville, Exponential attractors for nonautonomous partially dissipative equations. Differential Integral Equations 12 (1999) 1-22. | MR 1668525 | Zbl 1012.35010

[19] M. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Physica D 92 (1996) 178-192. | MR 1387065 | Zbl 0885.35121

[20] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969). | MR 259693 | Zbl 0189.40603

[21] D. Li and C. Zhong, Global attractor for the Cahn-Hilliard system with fast growing nonlinearity. J. Differential Equations (1998) | MR 1646238 | Zbl 0912.35029

[22] M. Marion and R. Temam, Navier-Stokes equations, theory and approximation, in Handbook of numerical analysis, P. G. Ciarlet and J. L. Lions eds. (to appear) | MR 1665429 | Zbl 0921.76040

[23] A. Miranville, Exponential attractors for nonautonomous evolution equations. Appl. Math. Letters 11 (1998) 19-22. | MR 1609661

[24] A. Miranville, Exponential attractors for a class of evolution equations by a decomposition method. C. R. Acad. Sci. 328 (1999) 145-150. | MR 1669003 | Zbl 1101.35334

[25] A. Miranville, Long time behavior of some models of Cahn-Hilliard equations in deformable continua. Nonlinear Anal. Series B (to appear). | MR 1835609 | Zbl 0989.35066

[26] A. Miranville, Exponential attractors for a class of evolution equations by a decomposition method. II. The nonautonomous case C. R. Acad. Sci. 328 (1999) 907-912. | MR 1689877 | Zbl 1141.35340

[27] A. Miranville, Equations de Cahn-Hilliard généralisées dans un milieu déformable. C. R. Acad. Sci. 328 (1999) 1095-1100. | MR 1696213 | Zbl 0930.35175

[28] A. Miranville, A model of Cahn-Hilliard equation based on a microforce balance. C. R. Acad. Sci. 328 (1999) 1247-1252. | MR 1701394 | Zbl 0932.35118

[29] A. Miranville, A. Piétrus and J. M. Rakotoson, Dynamical aspect of a generalized Cahn-Hilliard equation based on a microforce balance. Asymptotic Anal. 16 (1998) 315-345. | MR 1612825 | Zbl 0936.35036

[30] B. Nicolaenko, B. Scheurer and R. Temam, Some global dynamical properties of a class of pattern formation equations. Comm. Partial Differential Equations 14 (1989) 245-297. | MR 976973 | Zbl 0691.35019

[31] R. Temam, Infinite dimensional dynamical systems in mechanics and physics. 2nd. ed., Springer-Verlag, New-York (1997). | MR 1441312 | Zbl 0871.35001