We consider a model for phase separation of a multi-component alloy with non-smooth free energy and a degenerate mobility matrix. In addition to showing well-posedness and stability bounds for our approximation, we prove convergence in one space dimension. Furthermore an iterative scheme for solving the resulting nonlinear discrete system is analysed. We discuss also how our approximation has to be modified in order to be applicable to a logarithmic free energy. Finally numerical experiments with three components in one and two space dimensions are presented.
Mots-clés : phase separation, multi-component systems, degenerate parabolic systems of fourth order, finite element method, convergence analysis
@article{M2AN_2001__35_4_713_0, author = {Barrett, John W. and Blowey, James F. and Garcke, Harald}, title = {On fully practical finite element approximations of degenerate {Cahn-Hilliard} systems}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {713--748}, publisher = {EDP-Sciences}, volume = {35}, number = {4}, year = {2001}, mrnumber = {1863277}, zbl = {0987.35071}, language = {en}, url = {http://archive.numdam.org/item/M2AN_2001__35_4_713_0/} }
TY - JOUR AU - Barrett, John W. AU - Blowey, James F. AU - Garcke, Harald TI - On fully practical finite element approximations of degenerate Cahn-Hilliard systems JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2001 SP - 713 EP - 748 VL - 35 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/item/M2AN_2001__35_4_713_0/ LA - en ID - M2AN_2001__35_4_713_0 ER -
%0 Journal Article %A Barrett, John W. %A Blowey, James F. %A Garcke, Harald %T On fully practical finite element approximations of degenerate Cahn-Hilliard systems %J ESAIM: Modélisation mathématique et analyse numérique %D 2001 %P 713-748 %V 35 %N 4 %I EDP-Sciences %U http://archive.numdam.org/item/M2AN_2001__35_4_713_0/ %G en %F M2AN_2001__35_4_713_0
Barrett, John W.; Blowey, James F.; Garcke, Harald. On fully practical finite element approximations of degenerate Cahn-Hilliard systems. ESAIM: Modélisation mathématique et analyse numérique, Tome 35 (2001) no. 4, pp. 713-748. http://archive.numdam.org/item/M2AN_2001__35_4_713_0/
[1] Cone conditions and properties of Sobolev spaces. J. Math. Anal. Appl. 61 (1977) 713-734. | Zbl
and ,[2] An error bound for the finite element approximation of a model for phase separation of a multi-component alloy. IMA J. Numer. Anal. 16 (1996) 257-287. | Zbl
and ,[3] Finite element approximation of a model for phase separation of a multi-component alloy with non-smooth free energy. Numer. Math. 77 (1997) 1-34. | Zbl
and ,[4] Finite element approximation of a model for phase separation of a multi-component alloy with a concentration dependent mobility matrix. IMA J. Numer. Anal. 18 (1998) 287-328. | Zbl
and ,[5] Finite element approximation of a model for phase separation of a multi-component alloy with non-smooth free energy and a concentration dependent mobility matrix 9 (1999) 627-663. | Zbl
and ,[6] An improved error bound for a finite element approximation of a model for phase separation of a multi-component alloy with a concentration dependent mobility matrix. Numer. Math. 88 (2001) 255-297. | Zbl
and ,[7] Finite element approximation of a fourth order nonlinear degenerate parabolic equation. Numer. Math. 80 (1998) 525-556. | Zbl
, and ,[8] Finite element approximation of the Cahn-Hilliard equation with degenerate mobility. SIAM J. Numer. Anal. 37 (1999) 286-318. | Zbl
, and ,[9] The numerical analysis of a model for phase separation of a multi-component alloy. IMA J. Numer. Anal. 16 (1996) 111-139. | Zbl
, and ,[10] The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy, part i: Mathematical analysis. European J. Appl. Math. 2 (1991) 233-279. | Zbl
and ,[11] The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy, part ii: Numerical analysis. European J. Appl. Math. 3 (1992) 147-179. | Zbl
and ,[12] A multi-phase Mullins-Sekerka system: matched asymptotic expansions and an implicit time discretisation for the geometric evolution problem, in Proc. Roy. Soc. Edinburgh 128 A (1998) 481-506. | Zbl
, and ,[13] Analyse numérique d'un problème de Stefan à deux phases par une méthode d'éléments finis. SIAM J. Numer. Anal. 12 (1975) 464-487. | Zbl
,[14] Introduction to numerical linear algebra and optimisation. C.U.P., Cambridge (1988). | MR | Zbl
,[15] An analysis of clustering and ordering in multicomponent solid solutions - I. Stability criteria. J. Phys. Chem. Solids 33 (1972) 297-310.
,[16] Dynamics of fluctuations and spinodal decomposition in polymer blends. J. Chem. Phys. 72 (1980) 4756-4763. | Zbl
,[17] The Cahn-Hilliard model for the kinetics of phase transitions, in Mathematical models for phase change problems, J.F. Rodrigues Ed., Internat. Ser. Numer. Math. 88, Birkhäuser-Verlag, Basel (1989) 35-73. | Zbl
,[18] On the Cahn-Hilliard equation with degenerate mobility. SIAM J. Math. Anal. 27 (1996) 404-423. | Zbl
and ,[19] Diffusional phase transitions in multicomponent systems with a concentration dependent mobility matrix. Physica D 109 (1997) 242-256. | Zbl
and ,[20] A generalized diffusion equation for phase separation of a multi-component mixture with interfacial free energy. SFB256 University Bonn, Preprint 195 (1991).
and ,[21] Systems of Cahn-Hilliard equations. SIAM J. Appl. Math. 53 (1993) 1686-1712. | Zbl
,[22] Anisotropy in multi phase systems: a phase field approach. Interfaces Free Bound. 1 (1999) 175-198. | Zbl
, and ,[23] A singular limit for a system of degenerate Cahn-Hilliard equations. Adv. Diff. Eq. 5 (2000) 401-434. | Zbl
and ,[24] Nonnegativity preserving numerical schemes for the thin film equation. Numer. Math. 87 (2000) 113-152. | Zbl
and ,[25] Three-phase boundary motion by surface diffusion: stability of a mirror symmetric stationary solution. Interfaces Free Bound. 3 (2001) 45-80. | Zbl
and ,[26] Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16 (1979) 964-979. | Zbl
and ,[27] Spinodal decomposition in ternary systems. Acta Metall. 19 (1971) 1037-1045.
and ,[28] The Cahn-Hilliard equation: mathematical and modelling perspectives. Adv. Math. Sci. Appl. 8 (1998) 965-985. | Zbl
,[29] Zbl
and W. E, Thermodynamically driven incompressible fluid mixtures. J. Chem. Phys. 107 (1997) 10177-10184. |[30] Positivity preserving numerical schemes for lubrication-type equations. SIAM J. Numer. Anal. 37 (2000) 523-555. | Zbl
and ,