EasyMSG : tools and techniques for an adaptive overlapping in SPMD programming
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 36 (2002) no. 5, p. 863-882

During the development of a parallel solver for Maxwell equations by integral formulations and Fast Multipole Method (FMM), we needed to optimize a critical part including a lot of communications and computations. Generally, many parallel programs need to communicate, but choosing explicitly the way and the instant may decrease the efficiency of the overall program. So, the overlapping of computations and communications may be a way to reduce this drawback. We will see a implementation of this techniques using dynamic and adaptive overlapping based on the EasyMSG high level C++ library over MPI, a case of SPMD programming.

DOI : https://doi.org/10.1051/m2an:2002033
Classification:  31B10,  65R20,  65Y05,  68M10,  90B20
Keywords: SPMD parallel processing, message passing environment, communications optimization, C++, Maxwell equations, fast multipole method
@article{M2AN_2002__36_5_863_0,
     author = {Hav\'e, Pascal},
     title = {EasyMSG : tools and techniques for an adaptive overlapping in SPMD programming},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {36},
     number = {5},
     year = {2002},
     pages = {863-882},
     doi = {10.1051/m2an:2002033},
     zbl = {1027.65159},
     mrnumber = {1955539},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2002__36_5_863_0}
}
Havé, Pascal. EasyMSG : tools and techniques for an adaptive overlapping in SPMD programming. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 36 (2002) no. 5, pp. 863-882. doi : 10.1051/m2an:2002033. http://www.numdam.org/item/M2AN_2002__36_5_863_0/

[1] S. Balay, W. Gropp, L. Mcinnes and B. Smith, Petsc 2.0 users manual. Technical report, Argonne National Laboratory (1996).

[2] P. Havé, A parallel implementation of the Fast Multipole Method for Maxwell equations. Number Eccomas2001-7. Laboratoire d'Analyse Numérique de l'Université Pierre et Marie Curie, John Wiley & Sons (2001). | Zbl 1037.78021

[3] J.C. Nédélec, Cours de DEA de l'École Polytechnique et de l'Université Paris 6 (1999).

[4] S.M. Rao, D.R. Wilton and A.W. Glisson, Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Antennas and Propagations 30 (1982) 409-418.

[5] J.V.W. Reynders, The POOMA FrameWork-a templated class library for parallel scientific computing, in Proceedings of the Eighth SIAM Conference on Parallel Processing for Scientific Computing (Minneapolis, MN, 1997), Philadelphia, PA (1997) SIAM, p. 6. | MR 1602540

[6] V. Rokhlin, Rapid solution of integral equations of scattering theory in two dimensions. J. Comput. Phys. 86 (1990) 414-439. | Zbl 0686.65079

[7] Y. Roudier, D. Caromel and F. Belloncle, The C++// System, in Parallel Programming Using C++, G. Wilson and P. Lu Eds., MIT Press (1996) 257-296.

[8] D. Sagnol, F. Baude, D. Caromel and N. Furmento, Overlapping communication with computation in distributed object systems. Lecture Notes Comput. Sci. 1593, Springer, Amsterdam (1999) 744-753.

[9] D.C. Schmidt and T. Suda, Measuring the performance of parallel message-based process architectures. INFOCOM 2 (1995) 624-633.

[10] A. Skjellum, W. Gropp and E. Lusk, Using MPI: portable parallel programming with the message passing interface. ISBN 0-262-57104-8. MIT Press (1994).

[11] J. Vayssiere, D. Caromel and W. Klauser, Towards seamless computing and metacomputing in Java, in Concurrency Practice and Experience, G.C. Fox Ed., Wiley & Sons, Ltd (1998) 1043-1061.