Classification: 65C20, 65N15, 65N30, 65N35, 76D07, 93A30

Keywords: Stokes flow, reduced basis, reduced order model, domain decomposition, mortar method, output bounds, a posteriori error estimators

@article{M2AN_2006__40_3_529_0, author = {L\o vgren, Alf Emil and Maday, Yvon and R\o nquist, Einar M.}, title = {A reduced basis element method for the steady Stokes problem}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, publisher = {EDP-Sciences}, volume = {40}, number = {3}, year = {2006}, pages = {529-552}, doi = {10.1051/m2an:2006021}, zbl = {1129.76036}, mrnumber = {2245320}, language = {en}, url = {http://www.numdam.org/item/M2AN_2006__40_3_529_0} }

Løvgren, Alf Emil; Maday, Yvon; Rønquist, Einar M. A reduced basis element method for the steady Stokes problem. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 40 (2006) no. 3, pp. 529-552. doi : 10.1051/m2an:2006021. http://www.numdam.org/item/M2AN_2006__40_3_529_0/

[1] Vectors, tensors and the basic equations of fluid mechanics. Dover Publications (1989). | Zbl 1158.76300

,[2] Error-bounds for finite element method. Numer. Math. 16 (1971) 322-333. | Zbl 0214.42001

,[3] The mortar finite element method with Lagrange multipliers. Numer. Math. 84 (1999) 173-197. | Zbl 0944.65114

,[4] Inf-sup conditions for the mortar spectral element discretization of the Stokes problem. Numer. Math. 85 (2000) 257-281. | Zbl 0955.65088

, , and ,[5] Polynomial approximation of some singular functions. Appl. Anal. 42 (1992) 1-32. | Zbl 0701.41009

and ,[6] On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers. RAIRO Anal. Numér. 8 (1974) 129-151. | Numdam | Zbl 0338.90047

,[7] Mixed and Hybrid Finite Element Methods. Springer Verlag (1991). | MR 1115205 | Zbl 0788.73002

and ,[8] On the error behavior of the reduced basis technique in nonlinear finite element approximations. Z. Angew. Math. Mech. 63 (1983) 21-28. | Zbl 0533.73071

and ,[9] Construction of curvilinear co-ordinate systems and applications to mesh generation. Int. J. Numer. Meth. Eng. 7 (1973) 461-477. | Zbl 0271.65062

and ,[10] Spectral element methods for the Navier-Stokes equations. In Noor A. Ed., State of the Art Surveys in Computational Mechanics (1989) 71-143. | Zbl 0661.65107

and ,[11] A reduced-basis element method. J. Sci. Comput. 17 (2002) 447-459. | Zbl 1014.65119

and ,[12] The reduced-basis element method: application to a thermal fin problem. SIAM J. Sci. Comput. 26 (2004) 240-258. | Zbl 1077.65120

and ,[13] The ${P}_{N}\times {P}_{N-2}$ method for the approximation of the Stokes problem. Technical Report No. 92009, Department of Mechanical Engineering, Massachusetts Institute of Technology (1992).

, , and ,[14] Analysis of iterative methods for the steady and unsteady Stokes problem: Application to spectral element discretizations. SIAM J. Sci. Stat. Comp. (1993) 310-337. | Zbl 0769.76047

, , and ,[15] Reduced basis technique for nonlinear analysis of structures. AIAA J. 19 (1980) 455-462.

and ,[16] Reliable real-time solution of parametrized partial differential equations: Reduced basis output bound methods. J. Fluid Eng. 124 (2002) 70-80.

, , , , , and ,[17] A mixed finite element method for 2-nd order elliptic problems, in Mathematical Aspects of Finite Element Methodes, Lec. Notes Math. 606 I. Galligani and E. Magenes Eds., Springer-Verlag (1977). | MR 483555 | Zbl 0362.65089

and ,[18] Reduced-Basis Output Bound Methods for Parametrized Partial Differential Equations. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA (October 2002).

,[19] A Posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations (AIAA Paper 2003-3847), in Proceedings of the 16th AIAA Computational Fluid Dynamics Conference (June 2003).

, , and ,