We introduce a new second-order central-upwind scheme for the Saint-Venant system of shallow water equations on triangular grids. We prove that the scheme both preserves “lake at rest” steady states and guarantees the positivity of the computed fluid depth. Moreover, it can be applied to models with discontinuous bottom topography and irregular channel widths. We demonstrate these features of the new scheme, as well as its high resolution and robustness in a number of numerical examples.
Mots-clés : hyperbolic systems of conservation and balance laws, semi-discrete central-upwind schemes, Saint-Venant system of shallow water equations
@article{M2AN_2011__45_3_423_0, author = {Bryson, Steve and Epshteyn, Yekaterina and Kurganov, Alexander and Petrova, Guergana}, title = {Well-balanced positivity preserving central-upwind scheme on triangular grids for the {Saint-Venant} system}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {423--446}, publisher = {EDP-Sciences}, volume = {45}, number = {3}, year = {2011}, doi = {10.1051/m2an/2010060}, mrnumber = {2804645}, zbl = {1267.76068}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2010060/} }
TY - JOUR AU - Bryson, Steve AU - Epshteyn, Yekaterina AU - Kurganov, Alexander AU - Petrova, Guergana TI - Well-balanced positivity preserving central-upwind scheme on triangular grids for the Saint-Venant system JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2011 SP - 423 EP - 446 VL - 45 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2010060/ DO - 10.1051/m2an/2010060 LA - en ID - M2AN_2011__45_3_423_0 ER -
%0 Journal Article %A Bryson, Steve %A Epshteyn, Yekaterina %A Kurganov, Alexander %A Petrova, Guergana %T Well-balanced positivity preserving central-upwind scheme on triangular grids for the Saint-Venant system %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2011 %P 423-446 %V 45 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2010060/ %R 10.1051/m2an/2010060 %G en %F M2AN_2011__45_3_423_0
Bryson, Steve; Epshteyn, Yekaterina; Kurganov, Alexander; Petrova, Guergana. Well-balanced positivity preserving central-upwind scheme on triangular grids for the Saint-Venant system. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 3, pp. 423-446. doi : 10.1051/m2an/2010060. http://archive.numdam.org/articles/10.1051/m2an/2010060/
[1] On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation. J. Comput. Phys. 114 (1994) 45-58. | MR | Zbl
,[2] Testing numerical schemes for the shallow water equations. Preprint available at http://www-ian.math.uni-magdeburg.de/home/andriano/CONSTRUCT/testing.ps.gz (2004).
,[3] A finite volume extension of the Lax-Friedrichs and Nessyahu-Tadmor schemes for conservation laws on unstructured grids. Int. J. Comput. Fluid Dyn. 9 (1997) 1-22. | MR | Zbl
, and ,[4] A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25 (2004) 2050-2065. | MR | Zbl
, , , and ,[5] Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources. Frontiers in Math Series, Birkhäuser Verlag, Basel (2004). | MR | Zbl
,[6] Balanced central schemes for the shallow water equations on unstructured grids. SIAM J. Sci. Comput. 27 (2005) 532-552. | MR | Zbl
and ,[7] New nonoscillatory central schemes on unstructured triangulations for hyperbolic systems of conservation laws. J. Comput. Phys. 227 (2008) 5736-5757. | MR | Zbl
and ,[8] Théorie du mouvement non-permanent des eaux, avec application aux crues des rivière et à l'introduction des marées dans leur lit. C. R. Acad. Sci. Paris 73 (1871) 147-154. | JFM
,[9] Triangle based adaptive stencils for the solution of hyperbolic conservation laws. J. Comput. Phys. 98 (1992) 64-73. | Zbl
, and ,[10] Some approximate Godunov schemes to compute shallow-water equations with topography. Comput. Fluids 32 (2003) 479-513. | MR | Zbl
, and ,[11] Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation. Discrete Contin. Dyn. Syst. Ser. B 1 (2001) 89-102. | MR | Zbl
and ,[12] High order time discretization methods with the strong stability property. SIAM Rev. 43 (2001) 89-112. | MR | Zbl
, and ,[13] Multidimensional slope limiters for MUSCL-type finite volume schemes on unstructured grids. J. Comput. Phys. 155 (1999) 54-74. | MR | Zbl
,[14] On the accuracy of one-dimensional models of steady converging/diverging open channel flows. Int. J. Numer. Methods Fluids 35 (2001) 785-808. | Zbl
,[15] A steady-state capturing method for hyperbolic system with geometrical source terms. ESAIM: M2AN 35 (2001) 631-645. | Numdam | MR | Zbl
,[16] Two interface-type numerical methods for computing hyperbolic systems with geometrical source terms having concentrations. SIAM J. Sci. Comput. 26 (2005) 2079-2101. | MR | Zbl
and ,[17] Numerical Schemes for Conservation Laws. Wiley, Chichester (1997). | Zbl
,[18] Central-upwind schemes for the Saint-Venant system. ESAIM: M2AN 36 (2002) 397-425. | Numdam | MR | Zbl
and ,[19] On the reduction of numerical dissipation in central-upwind schemes. Commun. Comput. Phys. 2 (2007) 141-163. | MR | Zbl
and ,[20] Central-upwind schemes on triangular grids for hyperbolic systems of conservation laws. Numer. Methods Partial Diff. Equ. 21 (2005) 536-552. | MR | Zbl
and ,[21] A second-order well-balanced positivity preserving scheme for the Saint-Venant system. Commun. Math. Sci. 5 (2007) 133-160. | MR | Zbl
and ,[22] New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160 (2000) 214-282. | MR | Zbl
and ,[23] Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers. Numer. Methods Partial Diff. Equ. 18 (2002) 584-608. | MR | Zbl
and ,[24] Semi-discrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput. 23 (2001) 707-740. | MR | Zbl
, and ,[25] Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys. 146 (1998) 346-365. | MR | Zbl
,[26] Finite volume methods for hyperbolic problems. Cambridge Texts in Applied Mathematics, Cambridge University Press (2002). | MR | Zbl
,[27] On the artificial compression method for second-order nonoscillatory central difference schemes for systems of conservation laws. SIAM J. Sci. Comput. 24 (2003) 1157-1174. | MR | Zbl
and ,[28] Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87 (1990) 408-463. | MR | Zbl
and ,[29] Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows. J. Comput. Phys. 213 (2006) 474-499. | MR | Zbl
, , and ,[30] A kinetic scheme for the Saint-Venant system with a source term. Calcolo 38 (2001) 201-231. | MR | Zbl
and ,[31] Central schemes for balance laws, in Hyperbolic problems: theory, numerics, applications II, Internat. Ser. Numer. Math. 141, Birkhäuser, Basel (2001) 821-829. | MR
,[32] Central schemes for conservation laws with application to shallow water equations, in Trends and applications of mathematics to mechanics: STAMM 2002, S. Rionero and G. Romano Eds., Springer-Verlag Italia SRL (2005) 225-246. | MR
,[33] High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21 (1984) 995-1011. | MR | Zbl
,[34] Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov's method. J. Comput. Phys. 32 (1979) 101-136. | MR | Zbl
,[35] A new theoretically motivated higher order upwind scheme on unstructured grids of simplices. Adv. Comput. Math. 7 (1997) 303-335. | MR | Zbl
,[36] High order finite difference WENO schemes with the exact conservation property for the shallow water equations. J. Comput. Phys. 208 (2005) 206-227. | MR | Zbl
and ,[37] A new approach of high order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms. Commun. Comput. Phys. 1 (2006) 100-134. | MR | Zbl
and ,Cité par Sources :