An efficient computational framework for reduced basis approximation and a posteriori error estimation of parametrized Navier-Stokes flows
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 48 (2014) no. 4, p. 1199-1226
The full text of recent articles is available to journal subscribers only. See the article on the journal's website

We present the current Reduced Basis framework for the efficient numerical approximation of parametrized steady Navier-Stokes equations. We have extended the existing setting developed in the last decade (see e.g. [S. Deparis, SIAM J. Numer. Anal. 46 (2008) 2039-2067; A. Quarteroni and G. Rozza, Numer. Methods Partial Differ. Equ. 23 (2007) 923-948; K. Veroy and A.T. Patera, Int. J. Numer. Methods Fluids 47 (2005) 773-788]) to more general affine and nonaffine parametrizations (such as volume-based techniques), to a simultaneous velocity-pressure error estimates and to a fully decoupled Offline/Online procedure in order to speedup the solution of the reduced-order problem. This is particularly suitable for real-time and many-query contexts, which are both part of our final goal. Furthermore, we present an efficient numerical implementation for treating nonlinear advection terms in a convenient way. A residual-based a posteriori error estimation with respect to a truth, full-order Finite Element approximation is provided for joint pressure/velocity errors, according to the Brezzi-Rappaz-Raviart stability theory. To do this, we take advantage of an extension of the Successive Constraint Method for the estimation of stability factors and of a suitable fixed-point algorithm for the approximation of Sobolev embedding constants. Finally, we present some numerical test cases, in order to show both the approximation properties and the computational efficiency of the derived framework.

DOI : https://doi.org/10.1051/m2an/2014013
Classification:  65M15,  65M60,  65N12,  76D07,  78M34
Keywords: reduced basis method, parametrized Navier-Stokes equations, steady incompressible fluids, a posteriori error estimation, approximation stability
@article{M2AN_2014__48_4_1199_0,
     author = {Manzoni, Andrea},
     title = {An efficient computational framework for reduced basis approximation and a posteriori error estimation of parametrized Navier-Stokes flows},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     publisher = {EDP-Sciences},
     volume = {48},
     number = {4},
     year = {2014},
     pages = {1199-1226},
     doi = {10.1051/m2an/2014013},
     zbl = {1301.76025},
     language = {en},
     url = {http://www.numdam.org/item/M2AN_2014__48_4_1199_0}
}
Manzoni, Andrea. An efficient computational framework for reduced basis approximation and a posteriori error estimation of parametrized Navier-Stokes flows. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Volume 48 (2014) no. 4, pp. 1199-1226. doi : 10.1051/m2an/2014013. http://www.numdam.org/item/M2AN_2014__48_4_1199_0/

[1] M. Barrault, Y. Maday, N.C. Nguyen and A.T. Patera, An “empirical interpolation” method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math. Acad. Sci. Paris 339 (2004) 667-672. | MR 2103208 | Zbl 1061.65118

[2] G. Biswas, M. Breuer and F. Durst, Backward-facing step flows for various expansion ratios at low and moderate Reynolds numbers. J. Fluids Eng. 126 (2004) 362-374.

[3] F. Brezzi, On the existence, uniqueness, and approximation of saddle point problems arising from Lagrangian multipliers. RAIRO. Anal. Numér. 2 (1974) 129-151. | Numdam | MR 365287 | Zbl 0338.90047

[4] F. Brezzi, J. Rappaz and P.A. Raviart, Finite dimensional approximation of nonlinear problems. Part I: Branches of nonsingular solutions. Numer. Math. 36 (1980) 1-25. | MR 595803 | Zbl 0488.65021

[5] G. Caloz and J. Rappaz, Numerical analysis for nonlinear and bifurcation problems. In vol. 5, Techniques of Scientific Computing (Part 2). Handbook of Numerical Analysis, edited by P.G. Ciarlet and J.L. Lions. Elsevier Science B.V. (1997) 487-637. | MR 1470227

[6] C. Canuto, T. Tonn and K. Urban, A posteriori error analysis of the reduced basis method for non-affine parameterized nonlinear pdes. SIAM J. Numer. Anal. 47 (2009) 2001-2022. | MR 2519592 | Zbl 1195.65155

[7] S. Deparis, Reduced basis error bound computation of parameter-dependent Navier-Stokes equations by the natural norm approach. SIAM J. Numer. Anal. 46 (2008) 2039-2067. | MR 2399407 | Zbl 1177.35148

[8] S. Deparis and G. Rozza, Reduced basis method for multi-parameter-dependent steady Navier-Stokes equations: Applications to natural convection in a cavity. J. Comput. Phys. 228 (2009) 4359-437. | MR 2531903 | Zbl 1260.76024

[9] H.C. Elman, D.J. Silvester and A.J. Wathen, Finite Elements and Fast Iterative Solvers with Applications in Incompressible Fluid Dynamics. Series in Numer. Math. Sci. Comput. Oxford Science Publications, Clarendon Press, Oxford (2005). | MR 2155549 | Zbl pre06245239

[10] A.-L. Gerner and K. Veroy, Reduced basis a posteriori error bounds for the Stokes equations in parametrized domains: a penalty approach. Math. Models Methods Appl. Sci. 21 (2010) 2103-2134. | MR 2851708 | Zbl pre06045578

[11] P.M. Gresho and R.L. Sani, Incompressible Flow and the Finite Element Method: Advection-Diffusion and Isothermal Laminar Flow.John Wiley & Sons (1998). | Zbl 0941.76002

[12] H. Herrero, Y. Maday and F. Pla, RB (reduced basis) for RB (Rayleigh-Bénard). Comput. Methods Appl. Mech. Engrg. 261-262 (2013) 132-141. | MR 3069872 | Zbl 1286.76084

[13] D.B.P. Huynh, D.J. Knezevic, Y. Chen, J.S. Hesthaven and A.T. Patera, A natural-norm successive constraint method for inf-sup lower bounds. Comput. Methods Appl. Mech. Engrg. 199 (2010) 1963-1975. | MR 2654002 | Zbl 1231.76208

[14] K. Ito and S.S. Ravindran, A reduced order method for simulation and control of fluid flows. J. Comput. Phys. 143 (1998) 403-425. | MR 1631176 | Zbl 0936.76031

[15] T. Lassila, A. Manzoni, A. Quarteroni and G. Rozza, Boundary control and shape optimization for the robust design of bypass anastomoses under uncertainty. ESAIM: M2AN 47 (2013) 1107-1131. | Numdam | MR 3082291 | Zbl pre06198332

[16] T. Lassila, A. Manzoni, A. Quarteroni and G. Rozza, Model order reduction in fluid dynamics: challenges and perspectives. In vol. 9, Reduced Order Methods for Modeling and Computational Reduction. Edited by A. Quarteroni and G. Rozza. Springer MS&A Series (2014) 235-274. | MR 3241214

[17] A. Manzoni, Reduced models for optimal control, shape optimization and inverse problems in haemodynamics. Ph.D. thesis, École Polytechnique Fédérale de Lausanne (2012).

[18] A. Manzoni and F. Negri, Rigorous and heuristic strategies for the approximation of stability factors in nonlinear parametrized PDEs. Technical report MATHICSE 8.2014: http://mathicse.epfl.ch/, submitted (2014).

[19] A. Manzoni, A. Quarteroni and G. Rozza, Model reduction techniques for fast blood flow simulation in parametrized geometries. Int. J. Numer. Methods Biomed. Engrg. 28 (2012) 604-625. | MR 2946552

[20] A. Manzoni, A. Quarteroni and G. Rozza, Shape optimization of cardiovascular geometries by reduced basis methods and free-form deformation techniques. Int. J. Numer. Methods Fluids 70 (2012) 646-670. | MR 2973041

[21] N.C. Nguyen, K. Veroy and A.T. Patera, Certified real-time solution of parametrized partial differential equations. Handbook of Materials Modeling. Edited by S. Yip. Springer, The Netherlands (2005) 1523-1558.

[22] J.S. Peterson, The reduced basis method for incompressible viscous flow calculations. SIAM J. Sci. Statis. Comput. 10 (1989) 777-786. | MR 1000745 | Zbl 0672.76034

[23] A. Quarteroni and G. Rozza, Numerical solution of parametrized Navier-Stokes equations by reduced basis methods. Numer. Methods Partial Differ. Equ. 23 (2007) 923-948. | MR 2326199 | Zbl 1178.76238

[24] A. Quarteroni, G. Rozza and A. Manzoni, Certified reduced basis approximation for parametrized partial differential equations in industrial applications. J. Math. Ind. 1 (2011). | MR 2824231 | Zbl 1273.65148

[25] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations 1st edition. Springer-Verlag, Berlin-Heidelberg (1994). | MR 1299729 | Zbl 1151.65339

[26] G. Rozza, D.B.P. Huynh and A. Manzoni, Reduced basis approximation and a posteriori error estimation for Stokes flows in parametrized geometries: roles of the inf-sup stability constants. Numer. Math. 125 (2013) 115-152. | MR 3090657 | Zbl pre06210474

[27] G. Rozza, D.B.P. Huynh and A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Engrg. 15 (2008) 229-275. | MR 2430350 | Zbl pre05344486

[28] G. Rozza and K. Veroy, On the stability of reduced basis methods for Stokes equations in parametrized domains. Comput. Methods Appl. Mech. Engrg. 196 (2007) 1244-1260. | MR 2281777 | Zbl 1173.76352

[29] S. Sen, K. Veroy, D.B.P. Huynh, S. Deparis, N.C. Nguyen and A.T. Patera, “Natural norm” a posteriori error estimators for reduced basis approximations. J. Comput. Phys. 217 (2006) 37-62. | MR 2250524 | Zbl 1100.65094

[30] R. Temam, Navier-Stokes Equations. AMS Chelsea, Providence, Rhode Island (2001). | MR 1846644 | Zbl 0981.35001

[31] K. Veroy and A.T. Patera, Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds. Int. J. Numer. Methods Fluids 47 (2005) 773-788. | MR 2123791 | Zbl 1134.76326

[32] M. Yano and A.T. Patera, A space-time variational approach to hydrodynamic stability theory. Proc. R. Soc. A 469 (2013) 0036. | MR 3061348