We develop the a posteriori error analysis of finite element approximations to implicit power-law-like models for viscous incompressible fluids in
Accepté le :
DOI : 10.1051/m2an/2015085
Mots-clés : Adaptive finite element methods, implicit constitutive models, power-law fluids, a posteriori analysis, convergence
@article{M2AN_2016__50_5_1333_0, author = {Kreuzer, Christian and S\"uli, Endre}, title = {Adaptive finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1333--1369}, publisher = {EDP-Sciences}, volume = {50}, number = {5}, year = {2016}, doi = {10.1051/m2an/2015085}, zbl = {1457.65201}, mrnumber = {3554545}, language = {en}, url = {https://www.numdam.org/articles/10.1051/m2an/2015085/} }
TY - JOUR AU - Kreuzer, Christian AU - Süli, Endre TI - Adaptive finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2016 SP - 1333 EP - 1369 VL - 50 IS - 5 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2015085/ DO - 10.1051/m2an/2015085 LA - en ID - M2AN_2016__50_5_1333_0 ER -
%0 Journal Article %A Kreuzer, Christian %A Süli, Endre %T Adaptive finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2016 %P 1333-1369 %V 50 %N 5 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2015085/ %R 10.1051/m2an/2015085 %G en %F M2AN_2016__50_5_1333_0
Kreuzer, Christian; Süli, Endre. Adaptive finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 5, pp. 1333-1369. doi : 10.1051/m2an/2015085. https://www.numdam.org/articles/10.1051/m2an/2015085/
E. Acerbi and N. Fusco, An approximation lemma for
M. Ainsworth and J.T. Oden, A posteriori error estimation in finite element analysis. Wiley-Interscience, New York (2000). | MR | Zbl
C.D. Aliprantis and K.C. Border, Infinite dimensional analysis, A hitchhiker’s guide, 3rd edition. Springer, Berlin (2006). | MR | Zbl
J.-P. Aubin and H. Frankowska, Set-valued analysis, Modern Birkhäuser Classics. Birkhäuser Boston Inc., Boston, MA (2009), Reprint of the 1990 edition. | MR | Zbl
Local mesh refinement in 2 and 3 dimensions. IMPACT Comput. Sci. Engrg. 3 (1991) 181–191. | DOI | MR | Zbl
,L. Diening and M. Rzŭˇička, On the finite element approximation of p-stokes systems. SIAM J. Numer. Anal. 50 (2012) 373–397. | DOI | MR | Zbl
, ,
Quasi-optimality of an adaptive finite element method for the
Two-sided a posteriori error bounds for incompressible quasi-Newtonian flows. IMA J. Numer. Anal. 28 (2008) 382–421. | DOI | MR | Zbl
and ,Solution of the first boundary value problem for an equation of continuity of an incompressible medium. Dokl. Akad. Nauk SSSR 248 (1979) 1037–1040. | MR | Zbl
,Solenoidal Lipschitz truncation and applications in fluid mechanics. J. Differ. Eq. 253 (2012) 1910–1942. | DOI | MR | Zbl
, and ,Solenoidal Lipschitz truncation for parabolic PDEs. Math. Models Methods Appl. Sci. 23 (2013) 2671–2700. | DOI | MR | Zbl
, and ,F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Vol. 15 of Springer Series in Computational Mathematics (1991). | MR | Zbl
Continuity and compactness of measures. Adv. Math. 37 (1980) 16–26. | DOI | MR | Zbl
and ,On steady flows of incompressible fluids with implicit power-law-like rheology. Adv. Calc. Var. 2 (2009) 109–136. | DOI | MR | Zbl
, , and ,M. Bulíček, P. Gwiazda, J. Málek, K.R. Rajagopal and A. Świerczewska-Gwiazda, On flows of fluids described by an implicit constitutive equation characterized by a maximal monotone graph. Mathematical Aspects of Fluid Mechanics, London Mathematical Society Lecture Note Series (No. 402). Cambridge University Press (2012) 23–51. | MR | Zbl
On unsteady flows of implicitly constituted incompressible fluids. SIAM J. Math. Anal. 44 (2012) 2756–2801. | DOI | MR | Zbl
, , and ,Interpolation operators in Orlicz–Sobolev spaces. Numer. Math. 107 (2007) 107–129. | DOI | MR | Zbl
and ,
Convergence of an adaptive finite element method for the
On Lipschitz truncations of Sobolev functions (with variable exponent) and their selected applications. ESAIM: COCV 14 (2008) 211–232. | Numdam | MR | Zbl
, , and ,A decomposition technique for John domains. Ann. Acad. Sci. Fenn. Math. 35 (2010) 87–114. | DOI | MR | Zbl
, and ,L. Diening, C. Kreuzer and E. Süli, Finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology. Prpeprint (2012). | arXiv | MR | Zbl
Finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology. SIAM J. Numer. Anal. 51 (2013) 984–1015. | DOI | MR | Zbl
, and ,G. Duvaut and J.-L. Lions, Inequalities in mechanics and physics. [Translated from the French by C.W. John. Grundlehren der Mathematischen Wissenschaften, 219.] Springer-Verlag, Berlin (1976). | MR | Zbl
Two-grid finite-element schemes for the steady Navier–Stokes problem in polyhedra. Port. Math. (N.S.) 58 (2001) 25–57. | MR | Zbl
and ,A quasi-local interpolation operator preserving the discrete divergence. Calcolo 40 (2003) 1–19. | DOI | MR | Zbl
and ,
On elliptic and parabolic systems with
On flows of an incompressible fluid with discontinuous power-law-like rheology. Comput. Math. Appl. 53 (2007) 531–546. | DOI | MR | Zbl
, and ,J. Hron, J. Málek, J. Stebel and K. Touška, A novel view of computations of steady flows of Bingham and Herschel–Bulkley fluids using implicit constitutive relations. Proc. of the 26th Nordic Seminar on Computational Mechanics, Oslo, 23–25 October 2013, edited by A. Logg, K.-A. Mardal and A. Massing. Center for Biomedical Computing, Simula Research Laboratory, Oslo (2013) 217–219.
A recursive approach to local mesh refinement in two and three dimensions. J. Comput. Appl. Math. 55 (1994) 275–288. | DOI | MR | Zbl
,C. Kreuzer and E. Süli, Adaptive finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology. Preprint (2015). | arXiv | Numdam | MR | Zbl
Quasi-norm local error estimators for
J. Málek, Mathematical properties of the flows of incompressible fluids with pressure and shear rate dependent viscosities. D.Sc. thesis, Academy of Sciences of the Czech Republic, Prague (2007).
Mathematical properties of flows of incompressible power-law-like fluids that are described by implicit constitutive relations. Electron. Trans. Numer. Anal. 31 (2008) 110–125. | MR | Zbl
,A basic convergence result for conforming adaptive finite elements. Math. Models Methods Appl. 18 (2008) 707–737. | DOI | MR | Zbl
, , ,On implicit constitutive theories. Appl. Math., Praha 48 (2003) 279–319. | DOI | MR | Zbl
,On implicit constitutive theories for fluids. J. Fluid Mech. 550 (2006) 243–249. | DOI | MR | Zbl
,On the thermodynamics of fluids defined by implicit constitutive relations. Z. Angew. Math. Phys. 59 (2008) 715–729. | DOI | MR | Zbl
and ,A convergence proof for adaptive finite elements without lower bound. IMA J. Numer. Anal. 31 (2011) 947–970. | DOI | MR | Zbl
,A. Schmidt and K.G. Siebert, Design of adaptive finite element software. The finite element toolbox ALBERTA. Vol. 42 of Lect. Notes Comput. Sci. Engrg. Springer (2005). | MR | Zbl
The completion of locally refined simplicial partitions created by bisection. Math. Comput. 77 (2008) 227–241. | DOI | MR | Zbl
,R. Temam, Navier–Stokes equations. Theory and numerical analysis. Vol. 2 of Studies in Mathematics and its Applications, 3rd edition. North-Holland, Amsterdam, New York, Oxford (1984). | Zbl
R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques. Adv. Numer. Math. John Wiley, Chichester, UK (1996). | Zbl
R. Verfürth, A posteriori error estimation techniques for finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York (2013). | MR | Zbl
- A Virtual Element method for non-Newtonian pseudoplastic Stokes flows, Computer Methods in Applied Mechanics and Engineering, Volume 428 (2024), p. 117079 | DOI:10.1016/j.cma.2024.117079
- Note on quasi-optimal error estimates for the pressure for shear-thickening fluids, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 58 (2024) no. 5, p. 1907 | DOI:10.1051/m2an/2024051
- Analysis of a Stabilised Finite Element Method for Power-Law Fluids, Constructive Approximation, Volume 57 (2023) no. 2, p. 295 | DOI:10.1007/s00365-022-09591-4
- A Hybrid High-Order method for incompressible flows of non-Newtonian fluids with power-like convective behaviour, IMA Journal of Numerical Analysis, Volume 43 (2023) no. 1, p. 144 | DOI:10.1093/imanum/drab087
- On Unsteady Internal Flows of Incompressible Fluids Characterized by Implicit Constitutive Equations in the Bulk and on the Boundary, Journal of Mathematical Fluid Mechanics, Volume 25 (2023) no. 3 | DOI:10.1007/s00021-023-00803-w
- Non-isothermal non-Newtonian fluids: The stationary case, Mathematical Models and Methods in Applied Sciences, Volume 33 (2023) no. 09, p. 1747 | DOI:10.1142/s0218202523500410
- A Local Discontinuous Galerkin Approximation for thep-Navier–Stokes System, Part I: Convergence Analysis, SIAM Journal on Numerical Analysis, Volume 61 (2023) no. 4, p. 1613 | DOI:10.1137/22m151474x
- An adaptive iterative linearised finite element method for implicitly constituted incompressible fluid flow problems and its application to Bingham fluids, Applied Numerical Mathematics, Volume 181 (2022), p. 364 | DOI:10.1016/j.apnum.2022.06.011
- A hybrid high-order method for creeping flows of non-Newtonian fluids, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 55 (2021) no. 5, p. 2045 | DOI:10.1051/m2an/2021051
- On nonlinear problems of parabolic type with implicit constitutive equations involving flux, Mathematical Models and Methods in Applied Sciences, Volume 31 (2021) no. 10, p. 2039 | DOI:10.1142/s0218202521500457
- Finite element approximation and preconditioning for anisothermal flow of implicitly-constituted non-Newtonian fluids, Mathematics of Computation, Volume 91 (2021) no. 334, p. 659 | DOI:10.1090/mcom/3703
- Fully discrete finite element approximation of unsteady flows of implicitly constituted incompressible fluids, IMA Journal of Numerical Analysis, Volume 40 (2020) no. 2, p. 801 | DOI:10.1093/imanum/dry097
- Localization of the W-1,q norm for local a posteriori efficiency, IMA Journal of Numerical Analysis, Volume 40 (2020) no. 2, p. 914 | DOI:10.1093/imanum/drz002
- Numerical Analysis of Unsteady Implicitly Constituted Incompressible Fluids: 3-Field Formulation, SIAM Journal on Numerical Analysis, Volume 58 (2020) no. 1, p. 757 | DOI:10.1137/19m125738x
- The State of Stress and Strain Adjacent to Notches in a New Class of Nonlinear Elastic Bodies, Journal of Elasticity, Volume 135 (2019) no. 1-2, p. 375 | DOI:10.1007/s10659-019-09724-0
- Localization of global norms and robust a posteriori error control for transmission problems with sign-changing coefficients, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 52 (2018) no. 5, p. 2037 | DOI:10.1051/m2an/2018034
- Adaptive finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 50 (2016) no. 5, p. 1333 | DOI:10.1051/m2an/2015085
Cité par 17 documents. Sources : Crossref