Measured quantum groupoids  [ Groupoïdes quantiques mesurés ]
Mémoires de la Société Mathématique de France, no. 109 (2007), 166 p
@book{MSMF_2007_2_109__1_0,
     author = {Lesieur, Franck},
     title = {Measured quantum groupoids},
     series = {M\'emoires de la Soci\'et\'e Math\'ematique de France},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {109},
     year = {2007},
     doi = {10.24033/msmf.421},
     zbl = {1221.46003},
     mrnumber = {2474165},
     language = {en},
     url = {http://www.numdam.org/item/MSMF_2007_2_109__1_0}
}
Lesieur, Franck. Measured quantum groupoids. Mémoires de la Société Mathématique de France, Série 2, , no. 109 (2007), 166 p. doi : 10.24033/msmf.421. http://www.numdam.org/item/MSMF_2007_2_109__1_0/

[ADR00] C. Anantharaman-Delaroche & J. RenaultAmenable groupoids, Monographie de l’Enseignement Mathématique, Genève, 2000. | MR 1799683 | Zbl 0960.43003

[BS93] S. Baaj & G. Skandalis« Unitaires multiplicatifs et dualité pour les produits croisés de C * -algèbres », Ann. Sci. École Norm. Sup. 26 (1993), p. 425–488. | MR 1235438

[BDH88] M. Baillet, Y. Denizeau & J. Havet« Indice d’une espérance conditionnelle », Compositio Math. 66 (1988), p. 199–236. | Numdam | MR 945550 | Zbl 0657.46041

[Bla96] E. Blanchard« Déformations de C * -algèbres de Hopf », Bull. Soc. math. France 124 (1996), p. 141–215. | MR 1395009

[BNS99] G. Böhm, F. Nill & K. Szlachányi« Weak Hopf algebras I. Integral theory and C * -structure », J. Algebra 221 (1999), p. 385–438. | MR 1726707 | Zbl 0949.16037

[BSz96] G. Böhm & K. Szlachányi« A coassociative C * -quantum group with non integral dimensions », Lett. Math. Phys. 35 (1996), p. 437–456. | MR 1421688 | Zbl 0872.16022

[Co79] A. Connes« Sur la théorie non commutative de l’intégration », in Algèbres d’Opérateurs, Lecture Notes in Math., vol. 725, Springer-Verlag, Berlin/New-York, 1979, p. 19–143. | MR 548112

[Co80] —, « On the spatial theory of von Neumann algebras », J. Funct. Analysis 35 (1980), p. 153–164. | MR 561983 | Zbl 0443.46042

[Co94] —, Non Commutative Geometry, Academic Press, 1994.

[Da03] M. David« C * -groupoïdes quantiques et inclusions de facteurs : structure symétrique et autodualité. Action sur le facteur hyperfini de type II 1 », J. Operator Theory 54 (2005), no. 1, p. 27–68. | MR 2168858

[EN96] M. Enock & R. Nest« Inclusions of factors, multiplicative unitaries and Kac algebras », J. Funct. Analysis 137 (1996), p. 466–543. | MR 1387518 | Zbl 0847.22003

[Eno00] M. Enock« Inclusions of von Neumann algebras and quantum groupoids II », J. Funct. Analysis 178 (2000), p. 156–225. | MR 1800794 | Zbl 0982.46046

[Eno02] —, « Quantum groupoids of compact type », J. Inst. Math. Jussieu 4 (2005), no. 1, p. 29–133. | MR 2115070 | Zbl 1071.46041

[Eno04] —, « Inclusions of von Neumann algebras and quantum groupoids III », J. Funct. Analysis 223 (2005), no. 2, p. 311–364. | MR 2142344 | Zbl 1088.46036

[ES89] M. Enock & J. SchwartzKac algebras and Duality of locally compact Groups, Springer-Verlag, Berlin, 1989. | MR 1215933

[EV00] M. Enock & J. Vallin« Inclusions of von Neumann algebras and quantum groupoids », J. Funct. Analysis 172 (2000), p. 249–300. | MR 1753177 | Zbl 0974.46055

[Hah78a] P. Hahn« Haar measure for measured groupoids », Trans. Amer. Math. Soc. 242 (1978), p. 1–33. | MR 496796 | Zbl 0343.43003

[Hah78b] —, « The regular representations of measured groupoids », Trans. Amer. Math. Soc. 242 (1978), p. 35–72. | MR 496797 | Zbl 0356.46055

[KaV74] G. Kac & L. Vaĭnerman« Nonunimodular ring-groups and Hopf-von Neumann algebras », Math. USSR 23 (1974), p. 185–214. | MR 348038

[Kus97] J. Kustermans« KMS-weights on * -algebras », (1997), funct-an/9704008.

[Kus02] —, « Induced corepresentations of locally compact quantum groups », J. Funct. Analysis 194 (2002), p. 410–459. | MR 1934609 | Zbl 1038.46057

[KV99] J. Kustermans & S. Vaes« Weight theory for * -algebraic quantum groups », preprint University College Cork & KU1 Leuven, 1999, math/99011063. | MR 1689849

[KV00] —, « Locally compact quantum groups », Ann. Sci. École Norm. Sup. 33 (2000), no. 6, p. 837–934. | MR 1832993 | Zbl 1034.46508

[KV03] —, « Locally compact quantum groups in the von Neumann algebraic setting », Mathematica Scandinava 92 (2003), no. 1, p. 68–92. | MR 1951446 | Zbl 1034.46067

[KVD97] J. Kustermans & A. Van Daele« * -algebraic quantum groups arising from algebraic quantum groups », Int. J. Math., 8 (1997), p. 1067-1139, QA/9611023. | MR 1484867 | Zbl 1009.46038

[Les03] F. LesieurThèse, University of Orléans, available at: http://tel.ccsd.cnrs.fr/documents/archives0/00/00/55/05.

[Mac66] G. Mackey« Ergodic theory and virtual groups », Math. Ann. 186 (1996), p. 187–207. | MR 201562 | Zbl 0178.38802

[MN91] T. Masuda & Y. Nakagami« An operator algebraic framework for the duality of quantum groups », in Mathematical Physics X (Proc. AMP-91, Univ. Leipzig, 1991) (K. Schmüdgen, éd.), Springer-Verlag, Berlin, 1992, p. 291–295. | MR 1386416 | Zbl 0947.46501

[MNW03] T. Masuda, Y. Nakagami & S. Woronowicz« A * -algebraic framework for the quantum groups », math.QA/0309338. | Zbl 1053.46050

[Nik02] D. Nikshych« On the structure of weak Hopf algebras », Advances Math. 170 (2002), p. 257–286, in section 3. | MR 1932332 | Zbl 1010.16041

[NV00] D. Nikshych & L. Vaĭnerman« Algebraic versions of a finite dimensional quantum groupoid », 2000, p. 189–221. | MR 1763613 | Zbl 1032.46537

[NV02] —, « New directions in Hopf algebras », MSRI Publications, vol. 43, Cambridge University Press, 2002, p. 211–262.

[Nil98] F. Nill« Axioms of weak Bialgebras », (1998), math.QA/9805104.

[Ren80] J. RenaultA groupoid approach to C * -Algebras, Lecture Notes in Math., vol. 793, Springer-Verlag. | MR 584266 | Zbl 0433.46049

[Ren97] —, « The Fourier algebra of a measured groupoid and its multipliers », J. Funct. Analysis, 145 (1997), 455-490. | MR 1444088 | Zbl 0874.43003

[Sau83a] J.-L. Sauvageot« Produit tensoriel de Z-modules et applications », in Operator Algebras and their Connections with Topology and Ergodic Theory (Proceedings Busteni, Romania), Lecture Notes in Math., vol. 1132, Springer-Verlag, 1983, p. 468–485. | MR 799587

[Sau83b] —, « Sur le produit tensoriel relatif d’espaces de Hilbert », J. Operator Theory 9 (1983), p. 237–352. | Zbl 0517.46050

[Sau86] —, « Une relation de chaîne pour les dérivées de Radon-Nykodym spatiales », Bull. Soc. Math. France 114 (1986), p. 105–117. | Numdam | MR 860653 | Zbl 0635.46056

[Str81] S. StrătilăModular theory in operator algebras, Abacus Press, Turnbridge Wells, England, 1981. | MR 696172 | Zbl 0504.46043

[Tak03] M. TakesakiTheory of Operator Algebras II, Encycl. Math. Sci., vol. 125, Springer, 2003. | MR 1943006 | Zbl 1059.46031

[Vae01a] S. Vaes« A Radon-Nikodym theorem for von Neumann algebras », J. Operator Theory 46 (2001), p. 477–489. | MR 1897150 | Zbl 0995.46042

[Vae01b] —, « The unitary implementation of a locally compact quantum group action », J. Funct. Analysis 180 (2001), p. 426–480. | MR 1814995 | Zbl 1011.46058

[VV03] S. Vaes & L. Vaĭnerman« Extensions of locally compact quantum groups and the bicrossed product construction », Advances in Math. 175 (2003), no. 1, p. 1–101. | MR 1970242 | Zbl 1034.46068

[Val96] J. Vallin« Bimodules de Hopf et Poids opératoriels de Haar », J. Operator theory 35 (1996), p. 39–65. | MR 1389642

[Val00] —, « Unitaire pseudo-multiplicatif associé à un groupoïde, applications à la moyennabilité », J. Operator theory 44 (2000), p. 347–368. | MR 1794823

[Val01] —, « Groupoïdes quantiques finis », J. Algebra 239 (2001), p. 215–261. | MR 1827882

[Val02] —, « Multiplicative partial isometries and finite quantum groupoids », in Proceedings of the Meeting of Theorical Physicists and Mathematicians, Strasbourg, IRMA, Lect. Math. Theor. Physics, vol. 2, 2002, p. 189–227. | Zbl 1171.47306

[Val03] —, « Deformation of finite dimensional * -quantum groupoids », (2003), math.QA/0310265.

[VDa95] A. Van Daele« The Haar measure on a compact quantum group », Proc. Amer. Math. Soc. 123 (1995), p. 3125–3128. | MR 1277138 | Zbl 0844.46032

[VDa98] A. Van Daele« An algebraic framework for group duality », Adv. in Math. 140 (1998), p. 323–366. | MR 1658585 | Zbl 0933.16043

[VDa01] —, « The Haar measure on some locally compact quantum groups », (2001), math.OA/0109004.

[Wor87] S. Woronowicz« Twisted SU(2) group. An example of a non-commutative differential calculus », Publ. RIMS 23 (1987), p. 117–181, Kyoto University. | MR 890482 | Zbl 0676.46050

[Wor88] —, « Tannaka-Krein duality for compact matrix pseudogroups. Twisted SU(N) group », Invent. Math. 93 (1988), p. 35–76. | MR 943923 | Zbl 0664.58044

[Wor91] —, « Quantum E(2) group and its Pontryagin dual », Lett. Math. Phys. 23 (1991), p. 251–263. | MR 1152695 | Zbl 0752.17017

[Wor95] —, Compact quantum groups: Les Houches, Session LXIV, 1995, Quantum Symmetries, Elsevier, 1998.

[Wor96] —, « From multiplicative unitaries to quantum groups », Int. J. Math. 7 (1996), no. 1, p. 127–149. | MR 1369908 | Zbl 0876.46044

[Wor01] —, « Quantum “az+b" group on complex plane », International J. Math. 12 (2001), p. 461–503. | MR 1841400 | Zbl 1060.46515

[WZ02] —, « Quantum “ax+b" group », to appear in Reviews in Mathematical Physics. | Zbl 1042.46041

[Yam93] T. YamanouchiDuality for actions and co-actions of groupoids on von Neumann algebras, Memoirs of the AMS, vol. 484, 1993. | MR 1127115 | Zbl 0801.46080